ALGEBRA

ARITHMETIC OPERATIONS
\(a(b + c) = ab + ac \)
\(\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \)
\(\frac{a + c}{b} = \frac{a}{b} + \frac{c}{b} \)
\(\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \)

EXONENTS AND RADICALS
\(x^n \cdot x^m = x^{n+m} \)
\(\frac{x^n}{x^m} = x^{n-m} \)
\((x^n)^m = x^{nm} \)
\(x^{1/n} = \sqrt[n]{x} \)
\(\sqrt[n]{xy} = \sqrt[n]{x} \cdot \sqrt[n]{y} \)

FACTORING SPECIAL POLYNOMIALS
\(x^2 - y^2 = (x + y)(x - y) \)
\(x^3 - y^3 = (x + y)(x^2 - xy + y^2) \)
\(x^3 + y^3 = (x + y)(x^2 - xy + y^2) \)

BINOMIAL THEOREM
\((x + y)^2 = x^2 + 2xy + y^2 \)
\((x - y)^2 = x^2 - 2xy + y^2 \)
\((x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \)
\((x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \)
\((x + y)^n = x^n + nx^{n-1}y + \binom{n}{2} x^{n-2}y^2 + \cdots + \binom{n}{k} x^{n-k}y^k + \cdots + nx^2y^{n-1} + y^n \)
where \(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1 \cdot 2 \cdot 3 \cdots k} \)

QUADRATIC FORMULA
If \(ax^2 + bx + c = 0 \), then \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

INEQUALITIES AND ABSOLUTE VALUE
If \(a < b \) and \(b < c \), then \(a < c \).
If \(a < b \), then \(a + c < b + c \).
If \(a < b \) and \(c > 0 \), then \(ac < cb \).
If \(a < b \) and \(c < 0 \), then \(ac > cb \).
If \(a > 0 \), then
\(|x| = a \) means \(x = a \) or \(x = -a \)
\(|x| < a \) means \(-a < x < a \)
\(|x| > a \) means \(x > a \) or \(x < -a \)

GEOMETRY

GEOMETRIC FORMULAS
Formulas for area \(A \), circumference \(C \), and volume \(V \):
- Triangle
 \(A = \frac{1}{2}bh \)
- Circle
 \(A = \pi r^2 \)
 \(C = 2\pi r \)
 \(s = r\theta \) (\(\theta \) in radians)
- Sphere
 \(V = \frac{4}{3}\pi r^3 \)
- Cylinder
 \(V = \pi r^2h \)
- Cone
 \(V = \frac{1}{3}\pi r^2h \)

DISTANCE AND MIDPOINT FORMULAS
Distance between \(P_1(x_1, y_1) \) and \(P_2(x_2, y_2) \):
\(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
Midpoint of \(\overline{P_1P_2} \):
\(\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)

LINES
Slope of line through \(P_1(x_1, y_1) \) and \(P_2(x_2, y_2) \):
\(m = \frac{y_2 - y_1}{x_2 - x_1} \)
Point-slope equation of line through \(P_1(x_1, y_1) \) with slope \(m \):
\(y - y_1 = m(x - x_1) \)
Slope-intercept equation of line with slope \(m \) and \(y \)-intercept \(b \):
\(y = mx + b \)

CIRCLES
Equation of the circle with center \((h, k)\) and radius \(r \):
\((x - h)^2 + (y - k)^2 = r^2 \)