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MOTIVATION: LONGITUDINAL NEUROIMAGING ANALYSIS

Goal: Understand the progression of longitudinal neuroimaging measures
(e.g., PET) of people with various covariate progressions (e.g., “Abnormal”:
High→Low cognition vs. “Normal”: High→High cognition)
Challenge: Difficult to perform strong statistical analysis with small sample
size of longitudinal neuroimaging datasets

Figure: Longitudinal neuroimaging analysis of Alzheimer’s disease (AD) pathology.
Understanding how amyloid (AD pathology) accumulates differently in brain regions between
people of varying conditions may help us to better understand the underlying disease
mechanism.

OBJECTIVE: GENERATION OF NEUROIMAGING MEASURES
Solution: Conditional generation of longitudinal neuroimaging measures via
Conditional Recurrent Flow (CRow)
Example of Figure below with a trained CRow model:
1) Given: A sequential condition of decreasing cognition (i.e., a memory test
score sequence y1

i → y2
i → y3

i indicating High→Medium→Low Cognition
performance).
2) Model: Conditional Recurrent Flow (CRow).
3) Generate: A sequence of brain image progression x1

i → x2
i → x3

i
corresponding to the given cognition progression (i.e., brain regions with high
(red) and low (blue) disease pathology).
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Figure: Conditional sequence generation illustration. The Generated Sequence follows the
trend of the Real Data Sequence (i.e., similar (≈) to the real brain image progression) from the
subjects with similarly decreasing cognition scores.

PRELIMINARY 1: NORMALIZING FLOW AND COUPLING LAYER
Normalizing Flow: Maps a sample x to a latent variable z = f (x) where z is
from a standard normal distribution Z:

pX(x) = pZ(z)/|JX|, |JX| =

∣∣∣∣∣∂[x = f−1(z)]
∂z

∣∣∣∣∣ (1)

where |JX| is a Jacobian determinant.

Coupling Layer [Dinh et al., 2016]: Allows an exactly invertible mapping u↔ v
with subnetworks r and s.
1. Forward map (Fig. (a)):

v1 = u1, v2 = u2 ⊗ exp(s(u1)) + r (u1) (2)
2. Inverse map (Fig. (b)):

u1 = v1, u2 = (v2 − r (v1))� exp(s(v1)) (3)

(a) Forward map (b) Inverse map

Figure: Coupling layer in normalizing flow.

Advantage: Easy Jacobian determinant computation via triangular Jacobian
matrix Jv:
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(s(u1))i) (4)

Coupling Block: Apply the transformation on both partitions.
1. Forward map:

v1 = u1 ⊗ exp(s2(u2)) + r2(u2), v2 = u2 ⊗ exp(s1(v1)) + r1(v1) (5)
2. Inverse map:

u2 = (v2 − r1(v1))� exp(s1(v1)), u1 = (v1 − r2(u2))� exp(s2(u2)) (6)

PRELIMINARY 2: CONDITIONAL SAMPLE GENERATION
Conditional Invertible Neural Network [Ardizonne et al., 2019]: A conditional
invertible mapping between x↔ [y, z] using Coupling Layer.

Figure: Conditional Sample Generation. (1) Sample z ∼ Z, (2) Assign label y (i.e., color), (3)
Inverse map to generate x = f−1([y, z]) in the appropriate location.

METHOD: CONDITIONAL RECURRENT FLOW (CROW)
Conditional Recurrent Flow (CRow) [Hwang et al., 2019]:
Given: Sequential data xt ∈ X and label/covariate yt ∈ Y.
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where q(·) is a recurrent subnetwork (e.g., GRU).
Advantage: Longitudinal and conditional data generation along with density
estimation.

Figure: The CRow model.

Temporal Context Gating (TCG): Context-based (i.e., history) transformation
of the “non-transformed partition” (e.g., u1 in Eq. (2)).

fTCG(α
t,ht−1) = αt ⊗ cgate(ht−1) (forward), f−1

TCG(α
t,ht−1) = αt � cgate(ht−1) (inverse)

Advantage: Additional recurrent power while preserving the triangular
Jacobian matrix for fast Jacobian determinant computation:
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EXPERIMENT 1: GENERATE MOVING MNIST SEQUENCES

Q: Can we generate new data sequences given new sequential conditions?
(1) Train with label sequences y : 5→5→5→5→5→5 and y : 9→9→9→9→9→9
(2) Generate data sequences given a newly seen label sequences y which
changes label midway: 5→5→9→9→9→9

5→9:

Figure: Generated sequences using CRow. (top of each frame, [digit label]: density)

Ankle Boot→Sneaker:

Figure: Examples of generated Moving Fashion MNIST sequences using CRow.

EXPERIMENT 2: NEUROIMAGING FOR ALZHEIMER’S DISEASE
Q: Can we detect the differences in the Alzheimer’s disease (AD) pathology
progression between people with “Normal” and “Abnormal” covariate
progressions? (Idea illustrated in Fig. of Motivation Sec.)

Dataset: N = 276 Amyloid PET images (AV45) of T = 3 time points from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) in 82 Desikan Atlas regions
⇒ 1. Longitudinal region-wise amyloid measures: xt ∈ R82 for t = 1,2,3

2. Longitudinal covariates: yt ∈ R for t = 1,2,3 (e.g., cognition)

Analysis Setup: For each covariate type,
(1) Training: Train with all N = 276 subjects
(2) Generation: Generate (i) Group A: 100 samples of xt given “Abnormal” yt

and (ii) Group B: 100 samples of xt given “Normal” yt

(3) Statistical Analysis: At t = 3, perform a group difference test between
Group A and Group B in each region. Count significantly differences regions.

≈

≈

≈

Figure: Generated sequences vs. real data sequences comparison for CN (top)→MCI
(middle)→AD (bottom). Left (blue frames): The average of the 100 generated sequences
conditioned on CN→MCI→AD. Right (pink frames): The average of the real samples with
CN→MCI→AD in the dataset. Red/blue indicate high/low AV45. ROIs are expected to turn more
red as CN→MCI→AD. The generated samples show magnitudes and sequential patterns similar
(≈) to those of the real samples from the training data.

How well did CRow improve the statistical analysis?
# of Statistically Significant ROIs (# of ROIs after type-I error correction)

Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Progression CN→MCI→AD 10→20→30 30→26→22 70→50→30 0→5→10
cINN (N1=100 / N2= 100) 11 (4) 5 (2) 5 (0) 3 (0) 7 (0)
Ours (N1=100 / N2= 100) 25 (11) 24 (12) 19 (2) 15 (2) 18 (7)
Ours + TCG (N1=100 / N2= 100) 28 (12) 32 (14) 31 (2) 19 (2) 25 (9)
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Early-progression CN→MCI→MCI 10→13→16 30→28→26 70→60→50 0→2→4
cINN (N1=150 / N2= 150) 2 (0) 2 (2) 2 (0) 0 (0) 1 (0)
Ours (N1=150 / N2= 150) 6 (2) 6 (4) 11 (4) 5 (1) 2 (0)
Ours + TCG (N1=150 / N2= 150) 6 (4) 8 (5) 12 (4) 5 (1) 5 (1)

Table: Number of ROIs identified by statistical group analysis using the generated measures with
respect to various covariates associated with AD at significance level α = 0.01 (type-I error
controlled result shown in parenthesis). Each column denotes sequences of disease
progression represented by diagnosis/test scores.

How similar are the generated sequences to the real sequences?
Cohen’s d of Gen. vs. Real of Progressions Cohen’s d of Gen. vs. Real of Early-progressions

Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
cINN 1.255 1.596 1.149 1.894 1.551 1.065 1.498 0.948 1.843 1.454
Ours 0.419 0.556 0.348 0.711 0.645 0.359 0.561 0.295 0.613 0.625
Ours+TCG 0.282 0.391 0.167 0.588 0.377 0.234 0.5248 0.090 0.544 0.499

Table: Difference between the generated sequences and the real sequences at t = 3. Lower the
effect size (Cohen’s d), smaller the difference between the comparing distributions.
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