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EXPERIMENT 2: NEUROIMAGING FOR ALZHEIMER’S DISEASE

MOTIVATION: LONGITUDINAL NEUROIMAGING ANALYSIS

PRELIMINARY 1: NORMALIZING FLOW AND COUPLING LAYER

METHOD: CONDITIONAL RECURRENT FLOW (CRow)

Goal: Understand the progression of longitudinal neuroimaging measures Normalizing Flow: Maps a sample x to a latent variable z = f(x) where z is Conditional Recurrent Flow (CRow) [Hwang et al., 2019]: Q: Can we detect the differences in the Alzheimer’s disease (AD) pathology
(e.g., PET) of people with various covariate progressions (e.g., “Abnormal’: from a standard normal distribution Z: Given: Sequential data x! € X and label/covariate y' € Y progression between people with “Normal” and “Abnormal” covariate
High—Low cognition vs. “Normal”: High—High cognition) I[x = f1(2)] ) L P ; ; Pt Pt o progressions? (ldea illustrated in Fig. of Motivation Sec.)

. _— . ox(X) = pz(2)/ ||, || = (1) Ateach t with given [uj, u;] = U’ < X" and [v{,v;] = v’ < |y', 2],
Challenge: Difficult to perform strong statistical analysis with small sample ’ 0z 1. Forward Map: Dataset: N — 276 Amyloid PET images (AV45) of T — 3 time points from
size of longitudinal neuroimaging datasets where |Jx| is a Jacobian determinant. vi = Ul ® exp(qs,(Us, h5 ) + gr(us, K5 "), vh = ub ® exp(gs, (Vi, hi™ 1) + g, (v, hi™T) Alzheimer’s Disease Neuroimaging Initiative (ADNI) in 82 Desikan Atlas regions

. T - - - . ! 82 _
h  “Abnormar Coupling Layer [Dinh et al., 2016]: Allows an exactly invertible mappingu <> v | - Inverse Map. = 1. Longitudinal 'egion-wise a}mylmd measures: X' € R* fort=1,2,3
covariate trajectory W|th Subne’[WOFkS r and S, ug _ (Vé o qﬁ(vq’ h§—1)) % eXp(qS1(VZ1L, h$_1)), ug _ (Vﬁ o Qrg(uéa h£_1)) % eXP(Qsz(uéa h£—1)) 2 Long|tUd|na| covariates: y - R fOr [ = 1,2, 3 (e.g., COgnI’[IOﬂ)
g 1. Forward map (Fig. (a)): where q(-) is a recurrent subnetwork (e.g., GRU). Analysis Setup: For each covariate type,
- Differences in which regions? Vi=Uj, V2=Uz®exp(s(u)) + r(uy) (2)] Advantage: Longitudinal and conditional data generation along with density (1) Training: Train with all N = 276 subjects
Eg - 2. Inverse map (Fig. (b)): estimation. (2) Generation: Generate (i) Groupt A: 100 samples of x! given “Abnormal” y*
| < .I covariate trajectory U; = Vy, Uz = (V2 o r(v1)) % exp(S(V1)) (3) Vi VE and (“) .Car.OUp B 100 Samples Of X g|Ven Normal y
A A (3) Statistical Analysis: At t = 3, perform a group difference test between
= - Group A and Group B in each region. Count significantly differences regions.
‘j; VE le; Vl; ] )[fTCGl ] )69 Average of Generated Sequences \ | Average of Real Data Sequences
7y A | )é) | &\ o 3

Figure: Longitudinal neuroimaging analysis of Alzheimer’s disease (AD) pathology. (=1 | t 6
Understanding how amyloid (AD pathology) accumulates differently in brain regions between ’. ’@ > El— —— 1 — ){ q, J— —_———— —h—’>
people of varying conditions may help us to better understand the underlying disease R
mechanism.

OBJECTIVE: GENERATION OF NEUROIMAGING MEASURES
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Solution: Conditional generation of longitudinal neuroimaging measures via v v |
Conditional Recurrent Flow (CRow) “Tl “f “j “f | ®<
t—1 t
Example of Figure below with a trained CRow model: u u hy 11 —{ q- J— —_—— —h—% Q.
1) Given: A sequential condition of decreasing cognition (i.e., a memory test (a) Forward map (b) Inverse map X
score sequence y; — ys — Y7 indicating High—Medium—Low Cognition Figure: Coupling layer in normalizing flow.
erformacrlme) y y yi J g J g. P g y | ) o | ut ut Figure: Generated sequences vs. real data sequences comparison for CN (top)—MClI
P S Advantage: Easy Jacobian determinant computation via triangular Jacobian 1 ‘ (middle)—AD (bottom). Left (blue frames): The average of the 100 generated sequences
2) Model: Conditional Recurrent. F'_OW (CRow). | 1 , . matrix Jy: Figure: The CRow model. conditioned on CN—MCI—AD. Right (pink frames): The average of the real samples with
3) Generate. A sequence of bra.lr.] Image prog-ressllon X; % X’ % X: | | Iy g:f gx1 | 0 Temporal Context Gating (TCG): Context-based (i.e., history) transformation CN—MCI—AD in the dataset. Red/blue indicate high/low AY45. ROls are expected to turn more
corresponding to the glven cognition progression (i.e., brain regions with high | = Sul = v ovs| = av2 diag(exp s(uy))| ~ exp(Z(S(m))/) (4) of the “non-transformed partition” (e.g., u; in Eq. (2)). red as (gNel\/:cCrl]eAD.l The glenefrated rsamp!e_s shdow magnitudes and sequential patterns similar
(red) and low (blue) disease pathology). Ouy duz | TN o oty f1y (%) to those of the real samples from the training data.
C I3 Block: A the t f fi both titi frcg(a,h’™ ') = o ® cgate(h™™ ") (forward), fs(a’,h"™")=a ©cgate(h’™") (inverse) : . < .. :
Sequential oupling Block: Apply the transiormation on botn partitions. B . | | How well did CRow improve the statistical analysis* |
Conditi [High Cognition}-"){ Med Cognition}"') Low Cognition 1. Forward map: Advantage: Additional recurrent power while preserving the trlangular | # Of_ Statlst_lcally Significant ROIs (# of ROls after type-| error correction)
ondition B B Jacobian matrix for fast Jacobian determinant computation: Covariates Diagnosis ADAS13 MMSE RAVLII  CDR-SB
l l l Vi = Us @ exp(Sp(U2)) + 12(Uz), V2 = Uz @ exp(81(V1)) + 1 (V1) () - Control CNSCN-CN 1010510 303030 70-70—70 000
_ Vi OV diag(cgate(h!~ 0 B Progression CN—MCI—-AD 10—20—30 30—26—22 70—50—30 0—5—10
Our Model [ Conditional Recurrent Flow J 2. Inverse map. | = |90 v2| = ( oV, (h™5)) diag(exp s(uy))| ~ [H cgate(h’™");] » [exp(Z(S(m)),‘)] cINN (N;=100/ No= 100) 11 (4) 5 (2) 5 (0) 3 (0) 7 (0)
g o Ju; duy du P =(U - ,- Ours (N;=100/ No= 100) 25 (11) 24 (12) 19 (2) 15 (2) 18 (7)
Uz = (V2 — (V1)) @ exp(s1(V1)), U1 = (V1 — 2(U2)) © exp(Sz(U2)) (6) : Ours + TCG (N;=100 / Np= 100} 28 (12) 32 (14) 31 (2) 19 (2) 25 (9)
PRELIMINARY 2: CONDITIONAL SAMPLE GENERATION EXPERIMENT 1: GENERATE MOVING MNIST SEQUENCES Early-progression CNLMCI MGl 1041316 3028126 7060250 02 .4
Generated Conditional Invertible Neural Network [Ardizonne et al., 2019]: A conditional | Q- Can we generate new data sequences given new sequential conditions? CO'L'j'r';' ((,’\\,'jj o fﬁj: } 28)’ §§2§ §§i§ b (82) 2§?§ ;Egg
Sequence invertible mapping between x < |y, z] using Coupling Layer. (1) Train with label sequences y : 5—+5—5—5—5—=5andy : 9-9-9-9-9-9 Ours + TCG (N;=150 / Ne= 150) 6 (4) 8 (5) 12 (4) 5 (1) 5 (1)
Cabel N | (2) Generate data sequences given a newly seen label sequences y which Table: Number of ROls identified by statistical group analysis using the generated measures with
Data dDEC ormd h label mid 5_35_39_319_39_1Q respect to various covariates associated with AD at significance level « = 0.01 (type-I error
changes label midway:
U:X¢E X V [y - Y) 7 & Z] [51: 0.75 [5]: 0.52 [9]: 0.52 [9]:0.55 [9]:0.56 [9]: 0.60 controlled result shown in parenthesis). Each column denotes sequences of disease
— progression represented by diagnosis/test scores.
oY = green .
® —9:
Real Data : o 5 '5- How Slmll%l‘ are theGgenerated sequencesC to the rgal se(auences?
O ohen’s d of Gen. vs. Real of Progressions ohen’s d of Gen. vs. Real of Early-progressions
Sequence e T~ 0,:_ Figure: Generated sequences using CRow. (top of each frame, [digit label]: density) Covariates | Diagnosis ADAS13 MMSE RAVLT-I CDR-SB  Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
| - ‘ o y = blue BL0eE, _Dloas 028 U:03°, _ULD2E.  l71:9.89 cINN 1255 1596 1.149 1.894 1551 | 1.65  1.498 0948 1.843  1.454
| N o _ Ours 0419  0.556 0.348 0.711 0645 | 0.359 0561 0295 0.613  0.625
Figure: Conditional sequence generation illustration. The Generated Sequence follows the - ure: Conditional Sample G " 1\ Sampl 2 (9 Assian label v (i o, (3 Ankle Boot—sSneaker: Ours+TCG| 0.282  0.391 0.167 0.588 0.377 0.234 0.5248 0.090 0.544  0.499
trend of the Real Data Sequence (i.e., similar (=) to the real brain image progression) from the Ir:sej::e. m‘;" tlologr?era?em)f—e f‘?aerg])ui)r?-trfe)a afr‘:)p reiaztef\]oc;a(tign ssign label y (i.e., color), (3) Table: Difference between the generated sequences and the real sequences at t — 3. Lower the
subjects with similarly decreasing cognition scores. P10Q B y PPTop ' Figure: Examples of generated Moving Fashion MNIST sequences using CRow. effect size (Cohen’s d), smaller the difference between the comparing distributions.
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