
Overview

This chapter approaches the question of the nature of levels in biology from the point of 
view of materials science. I first examine multiscale investigations of materials such as 
steel beams (inactive materials). I compare these methods with recent work on the model-
ing of active materials—specifically, the behaviors and structures of the mitotic spindle. 
From this materials science perspective, scale separation allows for a conception of levels 
that does not necessarily track part–whole relations. Perhaps surprisingly, there are inter
esting and fruitful connections between multiscale modeling in physics and biology.

11.1  Introduction

Materials such as steel beams, fluids such as water, and schools of fish all exist at distinct 
“levels” or scales. By this I mean, at least in part, that they display distinct, dominant behav
iors at different spatial and temporal scales. Water, for example, displays fluid properties 
at rather long (everyday) time scales. Thus, it is much easier to wade into a pool of water 
than it is to wade into a pool of hardened concrete. However, as anyone who has ever 
flubbed a dive into a swimming pool can attest, at short time scales, water can display solid-
like behavior.

The fluid behavior of water is well described by the equations of hydrodynamics—the 
Navier–Stokes equations. These same equations describe the behavior of a host of other 
fluids that differ in their microscopic makeup. In other words, the equations describe upper-
scale behavior that is largely autonomous from the theoretical characterization of the actual 
molecular and atomic constituents of the different fluids. This autonomy can be understood 
in terms of a claim of stability that can explain how the Navier–Stokes equations can be 
completely wrong about the actual molecular details of a fluid (these equations treat fluids 
as continua—as having no component structure whatsoever at any length scale), yet be 
extremely accurate in characterizing the behaviors at everyday length scales. The continuum 
behavior of a fluid is stable under perturbations of lower-scale molecular details.

One would like to understand the relationships between behaviors of a single system at 
different scales. It is the same system, but its distinct behaviors seem to require theories 
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and models that are scale relative and applicable only at widely separated scales. For 
instance, the hydrodynamic equations are perfectly good for modeling the behaviors of 
fluid flow in a pipe, but they do not do as good a job in modeling the behavior of ink in 
an inkjet printer. For the latter, molecular dynamics is much more appropriate.1

The problem of modeling at different scales and the nature of the relationship between 
such models is actually at the heart of the age-old problem of the relationship between 
thermodynamics (a continuum theory) and statistical mechanics (a theory of collections 
of discrete particles). In this chapter, I will not be addressing this broad relationship 
between theories. Rather, I intend to discuss analogies and disanalogies that appear when 
attempting multiscale modeling of different kinds of systems.

In section 11.2, I consider how composite materials are modeled in materials science. 
Parameters that appear in continuum equations for the bending of metal bars differ in their 
values depending upon the type of metal—steel versus aluminum, for example. Those 
parameter values surely must reflect some lower-scale properties of the different materials. 
But in practice, the values are usually determined experimentally. This section considers 
the extent to which one can determine the values of those parameters theoretically. It pro-
vides a relatively detailed discussion of the modeling of materials at separate scales and 
the extent to which models at one scale can inform models at other scales. An important 
aspect to note here is that such modeling in materials science is fundamentally continuum 
modeling. Typically, details of the atomic or molecular level are not considered in any 
explicit fashion.

The next section addresses a similar problem in certain (primarily) biological systems 
that can be considered to be “active.” Active systems differ from the materials discussed 
in the first section because they are inherently out of equilibrium and because the compo-
nents of the systems independently burn their own energy.2 Large-scale active systems 
include bird flocks and swarming bacteria. Inside cells, there are materials that are active 
in this sense as well. This section looks at the materials science of active matter and dis-
cusses differences and similarities with the materials science modeling of inactive materi-
als. Can continuum models really be employed to understand the out-of-equilibrium, 
self-organizing structures that are characteristic of biological systems? One might be 
skeptical of such a possibility given the extreme complexity and nonequilibrium nature of 
such systems. It is, in fact, possible to study the material properties of such structures (the 
example discussed concerns the behaviors in the mitotic spindle) in a way quite analogous 
to the study of material properties in the cases of inactive matter like metal bars. I discuss 
briefly some of the commonalities between active and inactive material modeling and 
some of the differences.

The discussion suggests that a kind of “level” talk in the context of multiscale modeling 
yields a fruitful way of understanding the behaviors of various kinds of systems. Note that 
this conception of levels is not fundamentally based on a relation between parts and 
wholes. (Such a conception is common in various contexts, including biology.) Here the 
operative notion is that of scale separation. For the inactive materials studied in materials 
science, this way of thinking about levels has been very fruitful. Perhaps somewhat sur-
prisingly, the same is true for active (typically biological) materials as well.
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11.2  Inactive Materials

Steel is a composite material. At the level of atoms, it is primarily a lattice of carbon and 
iron atoms arranged in a certain order. At the level of railroad tracks, it appears as a homo-
geneous structure exhibiting no lower-scale structure at all. At this continuum scale, we 
can take the tracks to be roughly in (thermal) equilibrium yet subject to stresses when a 
train glides over them. When stressed, the track bends—it is perturbed from its equilibrium 
state—but (we hope) returns reasonably quickly to a quasi-equilibrium state after the train 
passes by. The way it returns to its equilibrium state depends on certain material parameters 
that characterize its bending and stretching behavior. From this continuum perspective, 
the equations that govern the behavior of the track under loading are called the Navier–
Cauchy equations:

(λ + µ)∇(∇ · u) + ρ∇2u + f = 0,	 (1)

where u is the displacement vector, ρ is the material density, and f are the body forces 
(e.g., gravity) acting on the material. The material parameters, λ and µ, are the “Lamé” 
parameters. They codify the bending and stretching behaviors of the material. In order to 
model a system using these equations, values for such material parameters (along with a 
value for the material density ρ) need to be specified. Different values for these determine 
how steel differs in its loading behavior from, say, aluminum or wood. Typically, the values 
for the Lamé parameters are determined by empirical experiments on a workbench.

When the Navier–Cauchy equations were first written down, there was no consensus about 
whether materials like steel or iron had (atomic or molecular) structure at any scale below 
that of the continuum. In other words, the hypothesis that there are atoms and molecules 
was not remotely settled.3 From our contemporary perspective, we know that materials do 
indeed have lower-scale structure. Steel, at atomic scales, is a lattice of iron and carbon 
atoms. And, at (meso) scales in between the atomic and the continuum, there are a host of 
other features. Surely, the material parameters, λ, µ, and ρ, must reflect some aspects of the 
lower-scale structures present in the material. In recent years, there has been considerable 
mathematical work on establishing appropriate connections between material structures at 
lower scales and ranges of allowed values for the material parameters. This work allows 
one, to a certain extent, to upscale—to determine values for the material parameters—in 
terms of structures at lower scales.

It turns out that the actual details at the level of the atomic lattice are largely irrelevant 
to the continuum scale behavior of the steel. This is important and reflects the relative 
autonomy of the continuum equations (the Navier–Cauchy equations and, for that matter, 
the equations of thermodynamics) from the detailed atomic and molecular configurations 
of the various systems. If we are interested in why the Navier–Cauchy equations work so 
well for designing safe bridges and buildings, we would need to demonstrate the stability 
of such structures under perturbation of lower-scale details. The functional form of the 
Navier–Cauchy equations gets things right at continuum scales. An important explanatory 
question is why? The answer, as noted, is in part that the important features in the modeling 
of material behavior are the structures that exist at mesoscales. We need to see how to talk 
about them.
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11.2.1  Upscaling and RVEs

At everyday continuum scales, a steel bar looks reasonably homogeneous. If we look at 
it with our naked eyes or with a magnifying glass, we don’t see much structure: it appears 
to be uniform. However if we zoom in, using high-powered microscopes or X-ray diffrac-
tion techniques, we will begin to see structures that are hidden at everyday lengths. In 
order to describe the main/dominant/important features of the steel at these shorter length 
scales, we employ the very important concept of a representative volume element (RVE). 
Consider the steel bar. A representative volume element is a material volume that is 
statistically representative of features of the steel at some particular spatial scale. In 
figure 11.1, the left side displays a material point, and it is surrounded by an infinitesimal 
material element. Structures in the material element—the voids, cracks, grain boundaries, 
and so on—are to be treated as the microstructure of that (macro) material element.

As is evident from the figure, the conception of the RVE involves the introduction of 
two length scales. There is the continuum or macroscale (D) by which the neighborhood 
of the material point is characterized, and there is a microscale (d) that represents the small-
est microstructures whose properties (typically shapes are most important) are believed to 
directly influence the overall response to stresses and strains imposed upon the neighbor-
hood surrounding the material point. These length scales must typically differ by orders 
of magnitude so that (d/D ≪ 1). The requirement of this scale separation is independent 
of the nature of the distribution of the microstructures in the RVE. For example, they may 
be periodically or randomly distributed throughout the RVE. Of course, that difference 
can be important and may very well affect the properties displayed by the RVE under 
stresses and strains.

MICROSCALEMACROSCALE
CONTINUUM

Inclusions

Magnified
Voids

Grain boundaries

Cracks

Figure 11.1
RVE.
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It is important to note at least three features of RVEs:
First, the RVE concept is scale relative. The actual characteristic lengths of the struc-

tures in a RVE can vary considerably. As Nemat-Nasser and Hori (1999) note, the overall 
properties of a mass of compacted fine powder in powder-metallurgy can have grains of 
micron size, so that a neighborhood of 100 microns can very well serve as a RVE: 
“Whereas in characterizing an earth dam as a continuum, with aggregates [stones, sticks, 
clay etc.] of many centimeters in size, the absolute dimension of an RVE would be of the 
order of tens of meters” (p. 15).

Second, the RVE and the structures within it are all considered continua. That is to say, 
we are operating at scales much higher than that of the spacings in an atomic lattice but 
much lower than that of the scale where the material appears as a homogeneous continuum. 
So, there are at least three widely separated scales. Call the scale of the atomic lattice or 
the scale of intermolecular interactions between fluid molecules δa. Then, strictly speaking, 
we have the following relation:

δa ≪ d ≪ D.

One typically eschews the very hard problem of upscaling from scales of order δa to D 
in favor of starting with those structures at the relevant RVE, namely, at scales of order d. 
This procedure, or this class of procedures, is known as “homogenization.” In the next 
section, I provide a brief introduction to some of the mathematics.

Third, in employing RVEs to gain information about a material, one is implicitly ignor-
ing boundaries or edges. In other words, one is essentially treating the material in bulk. 
We do not pay attention to what happens on the surface of the steel bar. This is, in effect, 
to treat the material as infinite in extent and is a natural and useful idealization.4

11.2.2  Upscaling

Our hypothesis is that the material parameters depend upon largely unknown aspects of 
the actual atomic or molecular makeup of the materials. Introducing material parameters 
such as the Láme parameters that code for lower-scale details actually introduces a level 
or scale intermediate between that of the continuum and the atomic.5 The idea is that the 
nature of the important structures in the relevant RVE (which are at an intermediate scale 
d, δa ≪ d ≪ D) largely determines the stable material parameters that characterize the mate-
rial at the continuum scale. The appeal to an RVE, therefore, introduces a middle level or 
scale between the atomic and the continuum. It is difficult to determine the nature of the 
inclusions, cracks, grain boundaries, and so on that are present in an RVE. Recall figure 11.1. 
One can employ various imaging techniques to determine such structure. In addition, in 
analogy with work on so-called hydrodynamic descriptions of fluids (Kadanoff & Martin, 
1963), one can attempt to employ correlation functions to try to map out structures. See 
also Torquato (2002) for a discussion of N-point correlation functions. More on this below 
in section 11.3.2.

We can see how this works by considering a composite material 50% of which is a good 
thermal conductor while the remaining 50% is an insulator. Suppose that the two distinct 
materials are well mixed. They might be periodic or randomly distributed, but suppose for 
illustrative purposes that for any reasonable RVE, the volume fractions of each are basi-
cally 1/2. If we tried to infer the conductivity of the material simply by averaging over 
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the volumes, we most likely will be grossly in error. If the dark material in figure 11.2 is 
the conductor and the configuration is as in the left RVE, then the material will be a very 
good conductor. But if the material is as in the right configuration, the material will be a 
terrible conductor.

A consequence of this simple example is that the sort of volume averaging typically 
assumed in statistical mechanics is not a good means for upscaling to determine continuum 
properties of systems. For instance, consider how, in typical statistical mechanical discus-
sions, one might reasonably try to determine the density of an ideal gas. One would choose 
an RVE containing a large but finite number (N) of molecules and divide that number by 
the volume (V) of the RVE; then, taking limits (N → ∞ and V → ∞), one would arrive at a 
reasonable value for the density of the gas. Likewise, the identification of thermodynamic 
temperature with mean molecular kinetic energy also involves such simple averaging. But, 
these averages, as a rule, will only work for homogeneous systems as the example in 
figure 11.2 clearly shows. Therefore, making direct connections from the atomic/molecular 
level to the continuum scale is not as straightforward as many reductionist programs assume.

11.2.3  Homogenization

In fact, most upscaling starts at the mesoscale level and proceeds using sophisticated 
mathematics called “homogenization” to determine ranges of values or bounds for the vari
ous material parameters appearing in the continuum equations like equation (1). The 
simple example of figure 11.2 leads directly to the need for homogenization as opposed 
to averaging. Let’s call the RVE in, say, the left figure Ω. Let’s say light region is Ω1, and 
the dark region is Ω2. Let the thermal conductivity of the entire heterogeneous material in Ω 
be designated by γ. The conductivity of the material in Ω1 is γ1. Likewise, γ 2 is the con-
ductivity for the material in Ω2.6 In other words,

γ (x) =
γ 1,       if x ∈Ω1

γ 2 ,       if x ∈Ω2.

⎧
⎨
⎪

⎩⎪

Denote the temperature at a point x ∈ Ω, u(x).7 Since the conductivities differ in the two 
regions, we have

u(x) =
u1(x),       if x ∈Ω1

u2(x),       if x ∈Ω2.

⎧
⎨
⎪

⎩⎪

Figure 11.2
50–50 volume RVEs.
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The flux of the temperature is given by

q =
q1 = γ 1 grad u1       in Ω1

q2 = γ 2 grad u2        in Ω2.

⎧
⎨
⎪

⎩⎪

We assume the continuity of the temperature and of the flux at the interfaces between 
the two materials:

 
u1 = u2 ,                on ∂Ω1 ∩ ∂Ω2

q1 ⋅ n1 = q2 ⋅ n2 ,      on ∂Ω1 ∩ ∂Ω2

⎧
⎨
⎪

⎩⎪ 	
(2)

where the ni are outward normal unit vectors on the boundaries ∂Ωi, (i = 1, 2) and n1 = −n2 
on the boundary ∂Ω1 ∩ ∂Ω2.

If we take f(x) to be a heat source, then the heat conduction problem (to find the tem-
perature u(x) given the heat source and the above boundary conditions) can be written as 
follows:

−div(γ (x)grad u(x)) = f (x)            in Ω1 ∪Ω2

u = 0,                                       on ∂Ω

u1 = u2 ,                                             on ∂Ω1 ∩ ∂Ω2

q1 ⋅ n1 = q2 ⋅ n2 ,                                  on ∂Ω1 ∩ ∂Ω2.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

	

(3)

Had the region Ω contained an isotropic single material with constant conductivity, this 
problem is an easily solvable elliptical partial differential equation. However, because we 
are considering a composite that satisfies the conditions (2), this means both that the gradi-
ent of the temperature u is discontinuous and that the flux q is not differentiable. Thus, to 
solve the problem (3) for the composite presents considerable difficulties. In fact, the 
problem requires the mathematics of weak solutions, with a weak notion of derivative that 
involves a formulation on a particular of space of functions known as a Sobolev space, H. 
Without going into detail, the heat conduction problem expressed in (3) is given a varia-
tional formulation:

Find u ∈ H such that8

γ (x)
Ω∫

i=1

N

∑ ∂u
∂xi

∂v
∂xi

dx = f v dx,
Ω∫ ∀v ∈H .

	
(4)

In many cases of physical interest, it is reasonable to assume (contrary to our 50–50 
example) that one of the materials has a much smaller volume than the other. So let us 
suppose that Ω1 is much smaller in volume than Ω2, and then we can proceed as follows. 
Further simplifying (again as is often reasonable), suppose that the heterogeneities of 
material in Ω1 with conductivity γ1 are periodically distributed throughout the RVE. See 
figure 11.3 for an idea of what this means.

The periodicity is represented by the small parameter ɛ. Given this, the conductivity γ 
for the composite as a whole becomes a function of ɛ, and problem (4) now has the fol-
lowing formulation:

Find uɛ ∈ H such that
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γ ε

Ω
∫

i=1

N

∑ (x) ∂u
ε

∂xi
∂v
∂xi

dx = f v dx,    ∀v ∈H .
Ω
∫

	
(5)

To represent the periodicity explicitly is reasonable to define γ ε as follows:

γ ε = γ x
ε

⎛
⎝⎜

⎞
⎠⎟
almost everywhere on !N .

	
(6)

We let γ be a periodic function with period Y; then by (6), the heterogeneities in Ω 
having size of order ε are periodic with period equal to εY. Now our problem (5) can be 
rewritten as follows:

Find uε ε H such that

γ x
ε

⎛
⎝⎜

⎞
⎠⎟
∂uε

∂xi
∂v
∂xi
dx = f v dx,    ∀v ∈H .

Ω
∫

Ω
∫

i=1

N

∑
	

(7)

Two scales now appear in the problem. There is a macroscopic scale x and a microscopic 
scale x

ε
. Now, speaking metaphorically (but in a way that can be made mathematically 

precise), we note that as ε → 0, x
ε

 will get larger (hence we are upscaling). Furthermore, 

the heterogeneities will get ever smaller, and we can hope to get a smoother, more homo-

y2

y1

Y

εY

Figure 11.3
Periodic heterogeneities with period ɛ (Cioranescu & Donato, 1999, p. 5).
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geneous mixture in that limit.9 This is a very different way to upscale than is the typical 
volume averaging employed in statistical mechanics. It allows one to find effective values 
for continuum parameters that will more accurately reflect the structures present at meso-
scales in various materials.

11.2.4  Bounds

A desideratum for upscaling would be to demonstrate that there are determinate ranges of 
values for the continuum scale Lamé parameters or for the thermal conductivity, γ, given 
some minimal facts about the nature of composite materials. If all we know is the volume 
fraction of the various components (of, e.g., the materials with conductivities γ 1 and γ 2) 
but we lack information about the geometry or distribution of the materials in the RVE, 
can we still delimit bounds within which the values of the effective parameters will be 
guaranteed to reside?

In fact, some rigorous mathematical results allow us to do exactly that. These results 
are particularly useful for determining the range of responses to composite materials under 
stresses.10

11.2.5  Summary Remarks

The main upshot of this discussion is that for heterogeneous materials and for nonhomo-
geneous (nonideal) gases, the volume averaging techniques typically assumed in philo-
sophical assertions of a direct/reductionist connection between statistical mechanics and 
thermodynamics will almost surely fail. Intermediate, mesoscale structures characterized 
by appropriate RVEs are crucial to upscaling. In fact, such mesoscale structures are typi-
cally the best places to start to bridge between models of materials at different scales.

Why was this section titled “Inactive Materials?” The answer is because by and large, 
the composite materials considered here are assumed to be (essentially) in thermal equi-
librium. Among other things, this assumption allows one to focus on bulk continuum 
behaviors of the systems, effectively ignoring any boundaries that might exist. But not all 
materials are like this. In fact, living systems are definitely not like this. There is a rela-
tively new field at the intersection of biology and physics that has come to be known as 
the study of “active matter.” These systems include swarms of bacteria, schools of fish, 
flocking birds, and processes in living cells. Understanding the behaviors of such systems 
requires some interesting twists to multiscale modeling. In the next section, I consider the 
nature of upscaling for active systems.

11.3  Active Materials

A crucial assumption of the discussion of upscaling in the last section (upscaling for what 
I call “inactive” materials) is that the system is a composite that is essentially in a state of 
equilibrium or quasi-equilibrium. However, the world is not static, and sometimes one needs 
to consider the upper-scale behavior of systems that are not in equilibrium. Relatively stan-
dard physics can be brought to bear on studying out-of-equilibrium behavior in steady states. 
A paradigm example is Rayleigh–Bénard convection. In this phenomenon, a fluid is con-
tained between two plates with the distance between the plates considerably less than that 
of the extent of the plates. Initially, the temperatures of the two plates are the same, and the 
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fluid is at thermal equilibrium with the plates. Upon increasing, slightly, the temperature of 
the lower plate, the system will no longer be in thermal equilibrium and a temperature gradi-
ent between the plates will be established. As a result of this gradient, there will appear 
alternating clockwise/counterclockwise motions, as displayed in figure 11.4.

This behavior is stable under reasonably small perturbations and will continue as long 
as the temperature differential between the top and bottom plates is maintained. Note, 
though, that this out-of-equilibrium steady-state flow requires that thermal energy be intro-
duced to the fluid-plate system exogenously. This is very interesting behavior, but it does 
not present any real modeling challenges.

On the other hand, the swarms, flocks, schools, and so on mentioned above are behaviors 
that do present new challenges. The difference is that the energy involved is not exogenous. 
Each component of the swarm, flock, school—each bacterium, bird, or fish—has its own 
energy source. Considered as microscopic degrees of freedom, they burn their own internal 
energy. This can lead to (emergent/collective) behaviors quite distinct from collections of 
passive or inactive components. Needleman and Dogic (2017, p.  136) say that active 
particles can “self-organize,” whereas passive particles “self-assemble.”11 The collective 
behavior of the fluid molecules in the Rayleigh–Bénard cells is an example, in their ter-
minology, of self-assembly.

As a rough guide, we can say that active matter has the following unifying features:

They are composed of self-driven units … each capable of converting stored or ambient free energy 
into systematic movement. The interaction of the active particles with each other, and with the 
medium they live in, give rise to highly correlated collective motion and mechanical stress. Active 
particles are generally elongated and their direction of self-propulsion is set by their own anisotropy, 
rather than fixed by an external field. (Marchetti et al., 2013, p. 1144)

11.3.1  Materials Science of the Mitotic Spindle

One area of rather intense research on the (bio)physics of active particles concerns the behav
ior of the mitotic spindle within the cytoskeleton of eukaryotic cells. The spindle (figures 
11.5 and 11.7) is a mechanism that segregates chromosomes in cell division and is an 
ensemble of filament structures called microtubules, molecular motors, and other proteins. 

cold

hot
Figure 11.4
Cartoon of Rayleigh–Bénard convection (Research Group Felix Otto, n.d.).
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Recent research approaches the behavior of the spindle from the point of view of materials 
science.12 The molecular motors “walk” along the filament structures that are often polarized—
oriented with plus and minus ends. In fact, these molecular motors often crosslink the micro-
tubules and in the process cause the filaments to slide past one another. See figure 11.6. The 
motors are fueled by ATP (Adenosine Triphosphate) and so are out-of-equilibrium compo-
nents. Their motions and their effects on the microtubules allow the spindle to segregate 
chromosomes into daughter cells during mitosis. See figure 11.6. These sliding motions allow 
for the mesoscale formation of different structures within the cytoskeleton.13 In fact, the 
nonequilibrium nature of the spindle allows for it to do some really quite remarkable things.
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Figure 11.5
Mitotic spindle (Prosser & Pelletier, 2017, p. 188).

Molecular motor

Microtubule

Figure 11.6
Microtubules and molecular motors (Needleman & Dogic, 2017).
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Figure 11.7
Spindle (Needleman & Dogic, 2017).
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Figure 11.8
Mesoscale properties of spindles (Needleman & Dogic, 2017).
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In vitro studies provide evidence for this. In figure 11.8, a spindle is cut and heals itself. 
In other instances, two spindles can fuse into one. Furthermore, by inhibiting certain molecu-
lar motors, one can change the shape of the spindle structure. All of this provides evidence 
of how larger-scale material structures can result from self-organizing active matter.

11.3.2  Mesoscale Descriptions of Active Materials

In section 11.2, we saw that material parameters reflect crucial features of composite (or 
noncomposite) inactive materials at scales of the relevant RVE. As noted, they introduce a 
third level or scale between the atomic and the macroscopic. Similarly, in condensed matter 
physics, another type of parameter, an order parameter, plays a crucial role in describing the 
continuum behaviors of fluids, magnets, and superconductors.14

In the mitotic spindle, as noted, some of the filaments are polar. One can study these 
structures at a mesoscale noting that different structures can be classified by different 
symmetries. If there is no relative orientation of the tubules with respect to one another, 
one will have isotropic structure at large length scales. If the tubules are polar yet oriented 
along an axis but pointing in different directions, one has essentially a nematic liquid 
crystal. If they are polar, axially oriented, and pointing in the same direction, one has a 
polar liquid crystal. See figure 11.9. These structures are well understood in (soft) equi-
librium condensed matter physics. Their responses to external pressures and stresses are 
also well understood.

In active materials, things become more complicated but nevertheless allow for the 
mesoscopic study of stresses and strains in the relevant RVEs. In fact, adding active stresses 
resulting from the actions of molecular motors genuinely leads to new behaviors and dif
ferent material properties. Dipolar active stresses preserve volume and therefore can initiate 

A  Structure

B  Topological defects

Isotropic

+1/2

Nematic

–1/2 +1

Polar

Figure 11.9
Symmetries of polar objects (Needleman & Dogic, 2017).



228	 Robert W. Batterman

flowing behavior in different directions, thereby helping to explain some of the larger-scale 
shape shifting one sees during mitosis. Figure 11.10 provides an idea of how isotropic and 
dipolar stresses can effect shape changes and induce motion or flow in the relevant cellular 
RVEs.15 Isotropic stresses (such as uniform pressure) can change the volume (expanding 
or contracting). Dipolar stresses can induce motion.

So far, we are describing bulk behaviors as we did in the cases of inactive matter. That 
is, we have tacitly assumed that the active materials studied are not spatially confined or 
walled in. But, an important feature of some active materials (including what goes on 
inside the cell) is the spatial confinement of the processes. This confinement or spatially 
bounded behavior can have dramatic effects on behaviors and classifications of the active 
materials we have been considering. Needleman and Dogic (2017) say that

chaotic dynamics is a generic feature of intrinsically unstable active nematics. By contrast, although 
the mitotic spindle is well described as an active nematic system, it retains a uniform alignment 
throughout its entire structure because of its finite size. This observation clearly demonstrates that 
boundary effects also strongly influence the behaviours of active nematics. (p. 9)

In “Physical Basis of Spindle Self-Organization,” Brugués and Needleman (2014a) 
develop a (minimal) liquid crystal model for understanding the self-organizing processes 
inside the spindle. The model assumes that the orientation of the microtubules and their 
density are cross-correlated or coupled. As such, the model allows for a higher-scale descrip-
tion of the dynamics inside the spindle. They employ sophisticated experimental techniques 
to determine values for spatiotemporal correlation functions of microtubule density, of 
microtubule orientation, and of stresses. Their model reproduces the experimentally deter-
mined values of these correlation functions. It is a continuum model described by nematic 
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Stresses in active materials (Needleman & Dogic, 2017).
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and polar fields, which result from the collective effects of local microtubule interactions 
that are determined by lower-scale effects of motor proteins and cross-linkers. Thus, they 
construct a mesoscale model that allows for qualitative and quantitative predictions of 
spindle behaviors, some of which are pictured in figures 11.8a, 11.8b, and 11.8c. Specifically, 
their measurements of the various correlation functions and of the generation and propaga-
tion of stress in the spindle are “consistent with spindle self-organization arising from the 
local interactions of microtubles, mediated by crosslinkers and motors, and microtubule 
polymerization dynamics” (Brugués & Needleman, 2014a, p. 18499).

In this model, the orientation of the microtubules is determined by nematic interactions, and the 
polar field convects the microtubule concentration and polarity magnitude. The magnitude of the 
nematic field is taken to be constant throughout the spindle, while the magnitude of the polarity 
field depends on motor activity and self-advection. (Brugués & Needleman, 2014b, p. 1)

The takeaway here is that continuum models of active materials, just as with inactive 
materials, can be very fruitful. Mesoscale parameters and fields can code for complex molecu-
lar scale behaviors, and the continuum minimal models can be shown to be quantitatively and 
qualitatively accurate. It remains to be seen, I believe, whether justifications of such models 
of the kind provided by homogenization theory (and the renormalization group) will be pos
sible in the active matter case. Further questions include describing the role of boundaries 
and confinement in active matter systems. In the case of the spindle discussed here, the ordered 
structures seem to depend upon the constraints that exist within the cytoskeleton. However, 
flocks of birds and schools of fish appear to generate their own boundaries (amorphous as 
they may be). Are there ways of explaining the emergence of such features? Does it make 
sense to say that for some active matter systems, boundaries are emergent?

I do think answers to these questions are forthcoming and depend upon a phenomenon 
quite common in condensed matter physics—the important fact that long-range correla-
tions can form even among systems whose components interact only locally. Early flock-
ing models (e.g., Vicsek et al., 1995) modeled individuals interacting in response to their 
immediate neighbors. Such “agent-based” models (akin to Ising models) were able to 
simulate quite interesting behaviors, including phase transitions from disordered to ordered 
states. More recently, in the vein of Brugués and Needleman’s approach, continuum 
hydrodynamic descriptions of flocks have been presented with an important focus on cor-
relations (see Toner et al., 2005). The key to successful mesoscopic continuum modeling 
of both active and inactive systems is to have an understanding of the nature of the relevant 
RVE. Spatial and temporal correlation functions allow for just such an understanding.

11.4  Conclusion

The conception of biological levels of organization is problematic, as witnessed by (at least 
some of ) the chapters in this volume. But a conception of properties or dominant behaviors 
at various spatial (and temporal) scales appears to be widespread across various sciences.16 
An important aspect of such a conception is the fact that when behaviors appear at widely 
separated scales, it is possible to model them largely independently of features that exist at 
different scales. Multiscale modelers take advantage of this relative autonomy of behaviors 
at separated scales to gain explanatory insight into the nature of different systems.
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Much work has been done to understand how such scale-relative behaviors can relate 
to one another in single systems. In section 11.2, I have characterized some of this work 
by focusing on the extremely important concept of a representative volume element (RVE). 
This is a mesoscale concept that can be exploited to try to determine the continuum scale 
behaviors of materials whether they be samurai swords or earthen dams. For the latter, the 
makeup of the RVE can easily be determined by digging with a shovel. For the former, 
various forms of microscopy will likely be necessary. In the case of fluids (as studied in 
statistical mechanics and thermodynamics), information about the RVEs can be theoreti-
cally probed using various spatial and temporal correlation functions whose values can be 
subjected to empirical tests.17 It turns out that some of the most important information 
about RVEs for upscaling is geometrical and topological, which is exactly the kind of 
information encoded in the correlation functions.

It is extremely interesting that one can actually, in certain contexts, treat biological 
structures and processes using some of the same techniques. The field of active matter 
is brand new and brings with it a new set of modeling challenges. In the last section, I 
provided an all-too-brief discussion of the multiscale modeling of active materials. The 
specific focus was on understanding the behaviors of the mitotic spindle using a continuum 
approach that is quite analogous to that discussed in the section on inactive materials. The 
analog of atoms or molecules is microtubules and molecular motor proteins. The analog 
of RVEs with their encoding of geometric and topological features of inactive materials 
is the nematic and polar fields within a spindle. Active materials can generate their own 
stresses and strains (unlike inactive materials). As a result, they are typically more complex 
than inactive materials. Yet, because of scale separation, the resulting upper-scale behav
iors can be nicely modeled without detailed knowledge of the lower-scale behaviors of 
microtubules and molecular motors. The multiscale methods of materials science general-
ize nicely to the cases of active materials despite the radically different behaviors active 
materials can exhibit.
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Notes

1.  The continuum hydrodynamic equations are partial differential equations. The equations of molecular dynam-
ics are ordinary differential equations. These are of completely different mathematical type. See Batterman (2009) 
for more details.
2.  Of course, this energy is typically provided by the environment.
3.  See Batterman (2013, section 3, pp. 269–273) for a discussion of this situation and the controversy surround-
ing the proper derivation of the Navier–Cauchy equations.
4.  It is also an idealization that sometimes is not warranted.
5.  For a discussion concerning the similarities between this feature of material parameters and so-called order 
parameters that are introduced to account for symmetry behaviors of condensed matter systems, see Batterman 
(2019).
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6.  γ, γi are material parameters. The following discussion shows how one can connect between such continuum 
parameters and mesoscale properties of RVEs.
7.  The ensuing discussion follows Cioranescu and Donato (1999).
8.  v ∈ H are knowns as “test functions.”
9.  A lot of difficult mathematics is involved in demonstrating that this limit exists, that the values for the tem-
peratures uɛ converge to an effective temperature, and that there exists an effective limit conductivity γeff to which 
the γ ɛ converges. This mathematics is called “homogenization theory.”
10.  It is beyond the scope of the present chapter to address these interesting investigations in any further detail. 
See Milton (2002, chap. 21) for a brief overview.
11.  Clearly, these are loaded terms. We need to see whether the phenomena described truly warrant such 
descriptors.
12.  The discussion here largely follows Needleman and Dogic (2017).
13.  There are three types of cytoskeletal motors—myosin, kinesin, and dynein. They direct different types of 
motion (yielding different kinds of shapes), as can be seen in figure 11.8.
14.  For a ferromagnet, the order parameter is the net magnetization of the material. As the ferromagnet is heated, 
the net magnetization (reflecting a preferred spatial direction) weakens as the spins begin to point in all direc-
tions. Above a critical temperature, the system is paramagnetic with full rotational symmetry.
15.  Needleman and Dogic (2017, p. 6) note that this figure is schematic in that the individual filaments appear 
to be the units experiencing the active stresses. In cells, the units might be pairs of filaments, asters, or bundles 
of different kinds.
16.  Suggestions along these lines can be found in the groundbreaking work of Bill Wimsatt. See Wimsatt (this 
volume) for a summary and discussion of many issues relating to levels and scales.
17.  Such experimental tests involve X-ray and neutron scattering, among other techniques.
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