INFSCI 2480: Adaptive Information Systems

User Models
for Adaptive Hypermedia
and Adaptive Educational Systems

Peter Brusilovsky
School of Information Sciences
University of Pittsburgh, USA
http://www.sis.pitt.edu/~peterb/
Where we are?

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Navigation</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics / Metadata</td>
<td>🟥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptive systems

Classic loop user modeling - adaptation in adaptive systems
Intelligent vs. Adaptive

1. Intelligent but not adaptive (no user model!)
2. Adaptive but not really intelligent
3. Intelligent and adaptive
3 Dimensions of User Models

• What is being modeled (nature)
• How this information is represented (structure)
• How the models are constructed and maintained

What is Being Modeled?

- User knowledge of the subject
- User interests
- User goals
- User background
- User individual traits
How to Model User Knowledge

• Scalar model
 – The user knowledge level is modeled as one value
 – Example: MetaDoc, CAT

• Structural model
 – What kind of knowledge?
 • Declarative, procedural, episodic
 – How it relates to expert knowledge?
 • Overlay model -> Bug mode -> Genetic model
Overlay Model of Knowledge

• Domain model
 – The whole body of domain knowledge is decomposed into set of smaller knowledge units
 – A set of concepts, topics, etc

• User knowledge model (aka student model)
 – Overlay of the Domain model
 – Student knowledge is measured independently for each knowledge unit
Vector vs. Network Domain Models

- Vector - no relationships
- Precedence (prerequisite) relationship
 - *is-a, part-of, analogy*
 - Wescourt et al, 1977
- Genetic relationships
 - Goldstein, 1979
Vector model

Concept 1

Concept 2

Concept 3

Concept 4

Concept N

Concept 5
Network model

Concept 1
Concept 2
Concept 3
Concept 4
Concept 5
Concept N
Simple overlay model
Simple overlay model
Weighted overlay model
Student Modeling Approaches

- Ad Hoc (1-100)
- Heuristic and rule-based (qualitative)
- Simple statistical (Bush, Atkinson)
- Probabilistic and Bayesian (BN, D-S…)
- Fuzzy
- Neural networks
- Combine approaches and layered models
How to do Course Sequencing

- Needs a Domain Model
- Uses classic or weighted overlay model
- Needs indexing of learning material with domain model
- May also need a learning goal (also based on domain model)
Indexing teaching material

• Types of indexing
 – One concept per ULM
 – Indexing of ULMs with concepts

• How to get the ULMs indexed?
 – Manual indexing (closed corpus)
 – Computer indexing (open corpus)
Simple case: one concept per learning activity

- Random selection if there are no links - Scholar
- Links can be used to restrict the order
MasteryGrids Interface:
one *topic* per learning activity
Indexing content with concepts

Concepts
- Concept 1
- Concept 2
- Concept 3
- Concept 4
- Concept N

Examples
- Example 1
- Example 2
- Example M

Problems
- Problem 1
- Problem 2
- Problem K
Simple goal model

• Learning goal as a set of topics
More complicated models

- Sequence, stack, tree
Sequencing with models

- Given the state of UM and the current goal, pick up the best topic or ULM within a subset of relevant ones (defined by links)
- Special cases with multi-topic indexing and several kinds of ULM
- Applying explicit pedagogical strategy to sequencing
Maintaining Overlay Models

• Adaptive educational systems use problems, questions, and other evaluation activities to model student knowledge

• If a page is read, an example is browsed, or a problem is solved, knowledge of all involved concepts increases (example: jWADEIn)
 – Links could be used to propagate knowledge

• If problem is not solved, the system needs to allocate “blame” for involved concepts
 – Links could be helpful to avoid noise
Models in SIETTE
Models for interactive problem-solving support and diagnosis

• Domain model
 – Concept model (same as for sequencing)
 – Bug model
 – Constraint model

• Student model
 – Generalized overlay model (works with bug model and constraint model too)

• Teaching material - feedback messages for bugs/constraints
Bug models

- Each concept/skill has a set of associated bugs/misconceptions and sub-optimal skills
- There are help/hint/remediation messages for bugs
Do we need bug models?

• Lots of works on bug models in the between 1974-1985

• Bugs has limited applicability
 – Problem solving feedback only. Sequencing does not take bugs into account: whatever misconceptions the student has - effectively we only can re-teach the same material
 – Short-term model: once corrected should disappear, so not necessary to keep
Constraint Model: SQL-Tutor

- Domain model: Set of constraints (procedural, evaluation knowledge); Student model: Bug model
Models for example-based problem solving support

• Need to represent problem-solving cases

• Episodic learner model
 – Every solution is decomposed on smaller components, but not concepts!
 – Keeping track what components were used and when - not an overlay!

• ELM-PE and ELM-ART - only systems that use this model
Multi-Aspect Models in ADAPTS - an adaptive IETM
What’s in adaptive content?

ADAPTS dynamically assembles custom-selected content.

Troubleshooting step plus hypermedia support for a specific technician within a specific work context.
Domain model example

<table>
<thead>
<tr>
<th>CONCEPT</th>
<th>Principles of Operation</th>
<th>Removal Instructions</th>
<th>Testing Instructions</th>
<th>Illustrated Parts Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reeling Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonar Data Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonar System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User model

• Characterizes user ability at each element of the domain model
 – Size of model is bounded by domain
 – Weights on different types of elements account for learning styles and preferences
 – Can be time sensitive

• Constrains the diagnostic strategy
User model example

<table>
<thead>
<tr>
<th>Concept</th>
<th>Role</th>
<th>AT2 Smith</th>
<th>AD2 Jones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reeling Machine</td>
<td>Theory of Operation</td>
<td>Reviewed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Removal Instructions</td>
<td>Hands-on</td>
<td>Reviewed</td>
</tr>
<tr>
<td>Sonar Data Computer</td>
<td>Simulation</td>
<td>Hands-on</td>
<td>Hands-on + Certified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reviewed</td>
<td>Preference</td>
</tr>
<tr>
<td>Sonar System</td>
<td>Certified</td>
<td></td>
<td>Reviewed</td>
</tr>
<tr>
<td></td>
<td>Hands-on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptive content selection

• Information is custom-selected for a user
 – Level of detail offered depends upon who the user is (i.e., his level of expertise)
 – Selected at a highly granular level, e.g., for each step within a procedure

• Performance-oriented training is presented as part of content
Interest Modeling

• User interests are typically modeled by overlay models as well

• Keyword model of user interests (profile)
 – Learned about it in user profiling lecture
 – User profile is a keyword overlay
 • “sub-symbolic” model

• Concept-level model of user interests
 – Concept overlay
Domain Models

- A domain model is required for interest modeling
 - Traditional domain model for interest modeling in educational context
 - A taxonomy of interest areas for non-educational areas

Example:
Domain model for adaptive News system
Overlay Model of Interests

• For each domain concept or taxon an overlay model stores estimated level of interest
Benefits of Concept-Level Overlay Interest Modeling

- The ability to use formal ontologies
 - Developed for a range of reasons
 - Pushed by the Semantic Web
- Links allow spreading activation
- *Understandable* by the users
 - Could be initialized and edited by the users
 - Can be used for explaining personalization
Ontological Interest Modeling

- Interests are deduced from the content of “interesting documents”
- Needs manual or automatic document to ontology matching

Spreading Activation

- Evidence of user interests can be propagated along the links
- Spreading activation over the model may be used for more reliable modeling and to deal with sparsity

Initializing and editing models

- Concept-level models are *understandable* by end users since they appeal to their own conceptualization of the domain.
- Users can initialize a model or edit it if she thinks that the system is not reflecting her interests.
- Editing keyword-level models produces poor results (Ahn YourNews study).

Explanations

- The presence of concepts or topics allows to better explain why a specific item is recommended to the user.

<table>
<thead>
<tr>
<th>Journal Paper</th>
<th>Topics of your interest included in this paper</th>
<th>Other topics included in this paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>Automatic Cross-Language Retrieval Using Latent Semantic Indexing</td>
<td>training methods</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>ST Dumais, TA Letsche, ML Litman...</td>
<td>multi-lingual semantic space</td>
</tr>
<tr>
<td></td>
<td>download document</td>
<td>machine translation</td>
</tr>
<tr>
<td></td>
<td>download BibTex</td>
<td>important associative relationships</td>
</tr>
</tbody>
</table>

Personalized access to scientific publications: from recommendation to explanation
Dario De Nart, Felice Ferrara, Carlo Tasso, 2013
Overlay model and content indexing

• The use of overlay models requires content to be related to domain concepts/topics, this is known as content indexing

• A range of indexing approaches exist in AH
 – Simplest case: Nodes are concepts
 • InterBook, ELM-ART, ISIS-Tutor
 – Indexing nodes with concepts
 • InterBook, ELM-ART, ISIS-Tutor, AHA
 – Indexing fragments with concepts
 • MetaDoc, AHA, PT
Generalized overlay models

• The overlay approach is quite generic, many aspects could be modeled as “generalized overlays”

• What has been learned so far
 – Knowledge modeling with overlays
 • Domain model - network of concepts
 • User model – weighed overlay of the domain model indicating concept knowledge
 – Interest modeling with overlays
 • Domain model – topic ontology
 • User model – overlay of the ontology indicating topic interests
Generalized overlay model for user goals and stereotypes

• Goals
 – Domain model: a set of possible goals, tree of goals
 – User model: on overlay of this set/tree showing probabilities that the user has one of these goals

• Stereotypes
 – Domain Model: a set or a taxonomy of user stereotypes
 – User model: on overlay of this DM showing probabilities that the user belongs to one of these stereotypes
Indexing with generalized model

- goals are nodes
 - HYPERFLEX
- content fragments are indexed with goals
 - PUSH
- nodes are indexed with user’s tasks
 - HYNECOSUM:
- nodes are indexed with stereotypes
 - EPIAIM, Anatom-Tutor, C-Book