
Lecture 10

Econ 2001

2015 August 21



Lecture 10 Outline

1 Derivatives and Partial Derivatives
2 Differentiability
3 Tangents to Level Sets

Calculus!
This material will not be included in today’s exam.

Announcement:
- Test 2 today at 3pm, in WWPH 4716; recitation at 1pm.
The exam will last an hour.



Differentiability: Roadmap

The objective is to define the “derivative”of a function that goes from a
multimensional subset of the reals to another multidimensional subset of the reals.

First, we look at properties of things we already know, namely functions from
one interval to the real line.

We use these properties to motivate the general definitions.

The central idea is that the derivative of a function at a point is a linear
approximation of that function as it “moves away” from that point.

When the domain is an interval in R things are easy: “moving away”means
only one thing.

When the domain is an interval in Rn things are more complicated: “moving
away”needs to be described more carefully.



Linear Approximations for Functions of One Variable

MAIN IDEA
Differentiation is about approximating a function with a linear function.

Think of a line that intersects the graph of f at the points (x , f (x)) and the
point (x + δ, f (x + δ)).

This line has slope given by:
f (x + δ)− f (x)
(x + δ)− x =

f (x + δ)− f (x)
δ

When f is linear, the line with this slope is f itself.

When δ is small:

lim
δ→0

f (x + δ)− f (x)
(x + δ)− x = lim

δ→0

f (x + δ)− f (x)
δ

For the limit to make sense, x must be an interior point of the domain of f .

If the limit exists, we say that f is differentiable at x and call it the derivative
of f at x .



Linear Approximations for Functions of One Variable

Definition
Let f : I → R, where I ⊆ R is an open interval. f is differentiable at x0 ∈ I if there
exists an a ∈ R such that

lim
h→0

f (x0 + h)− f (x0)
h

= a

Let x = x0 + h so that the expression above can be rewritten as

lim
x→x0

f (x)− f (x0)
x − x0

− a = 0

Define the affi ne (?) function g as g(x) = [f (x0)− ax0] + ax and observe that

lim
x→x0

∣∣∣∣ f (x)− g(x)x − x0

∣∣∣∣ = lim
x→x0

∣∣∣∣ f (x)− ([f (x0)− ax0] + ax)x − x0

∣∣∣∣
= lim

x→x0

∣∣∣∣ f (x)− f (x0) + a(x0 − x)x − x0

∣∣∣∣
= lim

x→x0

∣∣∣∣ f (x)− f (x0)x − x0
− a
∣∣∣∣

In other words, the difference between f and the affi ne function g disappears
in the limit.



Differentiability: Functions of One Variable

Definition
Let f : I → R, where I ⊆ R is an open interval. f is differentiable at x ∈ I if

lim
h→0

f (x + h)− f (x)
h

= a

for some a ∈ R.

The equation above is equivalent to

lim
h→0

f (x + h)− (f (x) + ah)
h

= 0

⇔ ∀ε > 0 ∃δ > 0 such that 0 < |h| < δ ⇒
∣∣∣∣ f (x + h)− (f (x) + ah)h

∣∣∣∣ < ε

⇔ ∀ε > 0 ∃δ > 0 such that 0 < |h| < δ ⇒ |f (x + h)− (f (x) + ah)||h| < ε

⇔ lim
h→0

|f (x + h)− (f (x) + ah)|
|h| = 0

The last expression motivates the general definition we will see later.



Partial Derivatives
What happens when f ’s domain is Rn?

One possibility is to perturb only one variable; that is, take derivatives ‘one
dimension at a time’.

We define this as the derivative when x is perturbed in the particular way
described by ei (the vector equal to 0 in all components but i , and equal to 1
in that component).

Definition
Given f : Rn −→ R. The ith partial derivative of f at x is defined as

∂f
∂xi
(x) = lim

h−→0

f (x+ hei )− f (x)
h

.

when this limit exists.

This definition treats every other xj as a constant: take the derivative as
though f were a function of just xi .

As in the one variable case, partial derivatives need not exist.

The partial derivative can be thought of as a function of one variable: h.

The one-variable function is of the form f (x+ hei ) with x and ei fixed.



Gradient

Definition
Given f : Rn −→ R, then the gradient of f at x ∈ Rn is

∇f (x) =
(
∂f
∂x1

(x),
∂f
∂x2

(x), . . . ,
∂f
∂xn

(x)
)

This is the vector of the n partial derivatives.

Note
The gradient is a vector in Rn .



Directional Derivatives
What happens when f ’s domain is Rn?

Another possibility is to perturb the function in a particular direction.

We define this as the derivative when x moves along some unit vector that is
non zero in more than one component.

Definition
Given f : Rn −→ R and let v be a unit vector in Rn (‖v‖ = 1). The directional
derivative of f in the direction v at x is defined as

Dv(x) = lim
h−→0

f (x+ hv)− f (x)
h

.

It follows from the definition, that
∂f
∂xi
(x) = Dei (x).

The ith partial derivative is the directional derivative in the direction ei .

The directional derivative can also be thought of as a function of one variable,
namely h.

The one-variable function is of the form f (x+ hv) with x and v fixed.



What is the direction from x that most increases the
value of f ?

Answer: the direction given by the gradient.

Theorem
If f : Rn −→ R is differentiable at x, then the direction v that maximizes
‖Dv f (x)‖ is

v = ∇f (x)

This result follows because

‖Dv f (x)‖ = ‖v · ∇f (x)‖ ≤ ||v|| × ||∇f (x)||
and the last inequality is an equality when v = ∇f (x).

Any idea why we may care about this?



Differentiability in General

So far, we have seen functions from Rn to R. Notation gets more messy when the
range is Rm .

One can think of f as a family of functions f i for i = 1, 2, ...,m.

Despite the messy notation, the conceptual difference is small.

A function is differentiable when it can be approximated by a linear function.
So, the derivatives are given by this linear approximation.

Also, we need to generalize

lim
h→0

|f (x + h)− (f (x) + ah)|
|h| = 0

when the numerator and denominator can be vectors.

Finally, the function may not be defined on the whole of Rn , but this is easy
to take care of.

We will see how the previous definitions can be thought of as special cases.



Differentiability
Definition
If X ⊂ Rn is open, f : X → Rm is differentiable at x ∈ X if there exist
Tx ∈ L(Rn ,Rm) such that

lim
h→0
h∈Rn

‖f (x+ h)− (f (x) + Tx (h))‖
‖h‖ = 0

f is differentiable if it is differentiable at all x ∈ X .

Tx is uniquely determined by the equation above.
The definition requires that the same linear operator Tx works no matter how
h approaches zero.
f (x) + Tx (h) is the best linear approximation to f (x+ h) for suffi ciently small
h.
Objects inside the ‖·‖ are vectors: numerator and denominator are lenghts of
vectors in Rm and Rn respectively.
Tx ∈ L(Rn ,Rm) is a big ugly thing: an m × n matrix.

Definition
The linear transformation Tx is called the differential of f at x , and is denoted dfx .



Notation: Big-Oh and little-oh
read this “y is big-Oh of ‖h‖n”
y = O(‖h‖n) as h→ 0 means

∃K , δ > 0 such that ‖h‖n < δ ⇒ ‖y‖ ≤ K ‖h‖n
read this “y is little-oh of ‖h‖n”
y = o(‖h‖n) as h→ 0 means

lim
h→0

‖y‖
‖h‖n = 0

Note that y = O(‖h‖n+1) as h→ 0 implies y = o(‖h‖n) as h→ 0.
Using the notation above:

f is differentiable at x⇔ ∃Tx ∈ L(Rn ,Rm) such that
f (x+ h) = f (x) + Tx (h) + o(h) as h→ 0

Definition
Let Ef (h) = f (x+ h)− (f (x) + dfx (h)) be the error term

Differentiability and Error Term
Using the previous slide’s notation:

f is differentiable at x⇔ Ef (h) = o(h) as h→ 0



The Jacobian Matrix
The Jacobian of f at x , denoted as Df (x), is the matrix corresponding to dfx with respect
to the standard basis.

Let {e1, . . . , en} be the standard basis of Rn .
Look in direction ej (note that ‖γej‖ = |γ|).

o(γ) = f (x+ γej )− (f (x) + Tx (γej ))

= f (x+ γej )−


f (x) +

 a11 · · · a1j · · · a1n
...

. . .
...

. . .
...

am1 · · · amj · · · amn





0
...
0
γ
0
...
0




= f (x+ γej )−

f (x) +
 γa1j

...
γamj




For i = 1, . . . ,m, let f i denote the i th component of the function f :

f i (x+ γej )−
(
f i (x) + γaij

)
= o(γ) ⇒ aij =

∂f i

∂xj
(x)

Go back to the definition of partial derivative to make sure you see this.



Jacobian and Partial Derivatives

All this algebra can be summarized as follows.

Theorem
Suppose X ⊂ Rn is open and f : X → Rm is differentiable at x ∈ X.
Then ∂f i

∂xj
exists for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and

Df (x) =


∂f 1

∂x1
(x) · · · ∂f 1

∂xn
(x)

...
. . .

...
∂f m

∂x1
(x) · · · ∂f m

∂xn
(x)


In words: the Jacobian is the matrix of partial derivatives.



Directional Derivatives and Partial Derivatives

NOTE
Suppose X ⊂ Rn open, f : X → Rm is differentiable at x , and take ‖u‖ = 1.

Then
f (x+ γu)− (f (x) + Tx (γu)) = o(γ) as γ → 0

⇒
f (x+ γu)− (f (x) + γTx (u)) = o(γ) as γ → 0

⇒
lim
γ→0

f (x+ γu)− f (x)
γ

= Tx (u) = Df (x)u

That is, the directional derivative in the direction u (with ‖u‖ = 1) is
Df (x)u ∈ Rm

The directional derivative is a weighted average of partial derivatives.



Summary so Far
f differentiable means ∃ Tx ∈ L(Rn ,Rm) s.t.

lim
h→0
h∈Rn

‖f (x+ h)− (f (x) + Tx (h))‖
‖h‖ = 0

The differential dfx is the linear transformation Tx
The Jacobian Df (x) is the matrix corresponding to dfx with respect to the
standard basis:

Df (x) =


∂f 1

∂x1
(x) · · · ∂f 1

∂xn
(x)

...
. . .

...
∂f m

∂x1
(x) · · · ∂f m

∂xn
(x)


One would hope that existence of all the partial derivates ∂f

i

∂xj
(x) implies that

the function is differentiable... but this is not enough.

REMARK

If f is differentiable at x, then all first-order partial derivatives ∂f
i

∂xj
exist at x.

However, the converse is false: existence of all the first-order partial
derivatives does not imply that f is differentiable.



Differentiability and Continuity
The missing piece is continuity of the partial derivatives:

Theorem

If all the first-order partial derivatives ∂f
i

∂xj
(1 ≤ i ≤ m, 1 ≤ j ≤ n) exist and are

continuous at x, then f is differentiable at x.

If a function has partial derivatives in all directions, then the function is
differentiable provided that these partial derivatives are continuous.

Definition
Let X ⊂ Rn be open. A function f : X → Rm is continuously differentiable on X if

1 f is differentiable on X and
2 dfx is a continuous function of x from X to L(Rn ,Rm).

f is C k if all partial derivatives of order ≤ k exist and are continuous in X .

Theorem
Suppose X ⊂ Rn is open and f : X → Rm . Then f is continuously differentiable on
X if and only if f is C 1.



Properties of the Derivative

Since the derivative is a linear transformation, some of these are easy to prove.

Theorem
If g , f : Rn −→ Rm are both differentiable at x ∈ Rn , then

1

D[cf ](x) = cDf (x) ∀c ∈ R
2

D[f + g ](x) = Df (x) + Dg(x)

For the case m = 1:
3

D[g · f ](x)
1×n

= g(x)
1×1
· Df (x)

1×n
+ f (x)

1×1
· Dg(x)

1×n
4

D
[
f
g

]
(x) =

g(x) · Df (x)− f (x) · Dg(x)
[g(x)]2



Chain Rule

Theorem (Chain Rule)
Let X ⊂ Rn , Y ⊂ Rm be open, f : X → Y , g : Y → Rp . Let x0 ∈ X and
F = g ◦ f .
If f is differentiable at x0 and g is differentiable at f (x0), then F = g ◦ f is
differentiable at x0 and

dFx0 = dgf (x0) ◦ dfx0 (composition of linear transformations)

and

DF (x0) = Dg(f (x0))Df (x0) (matrix multiplication)

Remark: This mirrors the univariate case (replace the univariate derivative by a
linear transformation), and the proof is similar (add linear algebra).



Chain Rule Special Case

Let f : Rm → R and g : R→ Rm then the Chain rule says:

D[f ◦ g ](t) = ∂y
∂t

= D(f (g(t))Dg(t)

=

(
∂f
∂x1

(g(t)), . . . ,
∂f
∂xm

(g(t))
)
·


dg1
dt
...
dgm
dt


=

m∑
i=1

∂y
∂xi
· dgi
dt



Chain Rule: Examples

Example
Let g : R −→ R and f : R −→ R2 be defined by

g(x) = x − 1 and f (y) =
(
2y
y 2

)
Hence

[f ◦ g ](x) =
(
2(x − 1)
(x − 1)2

)
and D[f ◦ g ](x) =

(
2

2(x − 1)

)
Having stated the obvious, see how the chain rule would work:

Dg(x) = 1 and Df (y) =
(

2
2y

)
Hence

Df (g(x))Dg(x) =
(

2
2(x − 1)

)



Chain Rule: Examples
Example

f (y) = f (y1, y2) =
(

y 21 + y2
y1 − y1y2

)
and g(x) = g(x1, x2) =

(
x21 − x2
x1x2

)
= y

Both g and f take in two arguments and give out a (2× 1) vector, so we have
g : R2 −→ R2, and f : R2 −→ R2

D[f ◦ g ](x) = Df (g(x))Dg(x)

=

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)
·
(

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

)
=

(
2y1 1
1− y2 −y1

)
·
(
2x1 −1
x2 x1

)
and we know that y1 = x

2
1 − x2 and y2 = x1x2

So
D[f ◦ g ](x) =

(
2x21 − 2x2 1
1− x1x2 x2 − x21

)
·
(
2x1 −1
x2 x1

)
=

(
4x1(x21 − x2) + x2 x1 − 2(x21 − x2)

2x1(1− x1x2) + x2(x2 − x21 ) x1(x2 − x21 ) + x1x2

)



Graph

Remember from earlier definitions:

The graph of f : X → Y is given by

Gr(f ) = {(x , y) : y = f (x)}.

If f : Rn −→ R, then the graph is a subset of Rn+1.
If n = 2, then the graph is a subset of R3, so someone with a good
imagination of a three-dimensional drawing surface could visualize it.

If n > 2 there is no hope. You can get some intuition by looking at “slices”of
the graph obtained by holding the function’s value constant.



Level Sets and Countours

Definition
The level set of a function f : Rn −→ R is defined as the set

{x ∈ X : f (x) = c}
for any c ∈ R.

This is the set of points such that the function achieves a given value.

While the graph of the function is a subset of Rn+1, the level sets are subsets
of Rn .

Definition
The upper contour set of f : Rn −→ R at x0 is the set

{x ∈ X : f (x) ≥ f (x0)}
The lower contour set of f : Rn −→ R at x0 is the set

{x ∈ X : f (x) ≤ f (x0)}



Tangents to Surfaces

A surface in Rn+1 can be viewed as the solution to a system of equations.

A point in Rn+1 can be represented as a pair (x , y), with x ∈ Rn and y ∈ R.
If F : Rn+1 −→ R, then the set

{(x , y) : F (x , y) = 0}
is typically an n dimensional set.

What is a tangent to this surface?
The tangent at (x0, y0) should be an n dimensional linear manifold in Rn+1
that contains (x0, y0).

It should also satisfy the approximation property:
if (x , y) is a point on the surface that is close to (x0, y0),

then it should be approximated up to first order by a point on the tangent.



Tangents to Surfaces: Gradients and Level Sets

Let F : Rn+1 −→ R be differentiable at (x0, y0).
Consider a function G : R −→ Rn+1 such that

G (0) = (x0, y0) and F ◦ G (t) ≡ 0 for t in a neighborhood of 0

G defines a curve on the surface through (x0, y0).

A direction on the surface at (x0, y0) is just a direction of a curve through
(x0, y0) or DG (0).

By the chain rule it follows that

∇F (x0, y0) · DG (0) = 0,

therefore ∇F (x0, y0) is orthogonal to all of the directions on the surface.

This generates a non-trivial hyperplane provided that DF (x0, y0) 6= 0.



Tangents to Surfaces: Gradients and Level Sets

Definition
Assume F : Rn+1 −→ R is differentiable at (x0, y0), that F (x0, y0) = 0, and that
DF (x0, y0) 6= 0.
The equation of the hyperplane tangent to the surface F (x , y) = 0 at the point
(x0, y0) is

∇F (x0, y0) · ((x , y)− (x0, y0)) = 0.

NOTE
Let f : Rn −→ R be differentiable at x ∈ Rn .

Consider the function F (x , y) = f (x)− y . The surface F (x , y) = 0 is exactly
the graph of f .

Hence the tangent to the surface is the tangent to the graph of f .

Thus, the formula for the equation of the tangent hyperplane given above can
be used to find the formula for the equation of the tangent to the graph of a
function.



Tangents to Surfaces: Gradients and Level Sets

Theorem
If f : Rn −→ R is differentiable at x0 ∈ Rn , then the vector ∇f (x0) is normal
(perpendicular) to the tangent vector of the level set of f at value f (x) at point
x ∈ Rn and the equation of the hyperplane tangent to the graph of f at the point
(x0, f (x0)) is

∇f (x0) · (x − x0)) = y − y0.

Proof.
Substitute ∇F (x0, y0) = (∇f (x0,−1) into the equation on the previous slide and
re-arrange terms.



Tangent to Surfaces: Example

Find the tangent plane to {x ∈ R3 : x1x2 − x23 = 6} ⊂ R3 at
x̂ = (2, 5, 2)

If you let f (x) = x1x2 − x23 , then this is a level set of f for value 6.

∇f (x) = ( ∂f
∂x1

,
∂f
∂x2

,
∂f
∂x3

) = (x2, x1,−2x3)

∇f (x̂) = ∇f (x) |x=(2,5,2)= (5, 2,−4)
Tangent Plane:

{y ∈ R3 : x̂+ y : y · ∇f (x̂) = 0} = {(2, 5, 2) + (y1, y2, y3) : 5y1 + 2y2 − 4y3 = 0}
= {x ∈R3 : 5x1 − 10+ 2x2 − 10− 4x3 + 8 = 0}
= {x ∈R3 : 5x1 + 2x2 − 4x3 = 12}



Tangent to Surfaces: Example
Example

Let f (x , y , z) = 3x2 + 2xy − z2 and consider the level set at (2, 1, 3).
Since f (2, 1, 3) = 7, this level set is

{(x , y , z) : f (x , y , z) = 7}.
It is a two-dimensional surface in R3 that can be written as F (x , y , z) = 0:

f (x , y , z)− 7 = 0
The tangent to the level set of f is an hyperplane in R3

∇f (x , y , z) = (6x + 2y , 2x ,−2z)
At the point (2, 1, 3), the hyperplane has normal equal to

∇f (2, 1, 3) = (14, 4,−6)
Hence the equation of the hyperplane to the level set at (2, 1, 3) is :

(14, 4,−6) · (x − 2, y − 1, z − 3) = 0 or 14x + 4y − 6z = 14.
The graph of f is a three-dimensional subset of R4:

{(x , y , z ,w) : w = f (x , y , z)}

A point on this surface is (2, 1, 3, 7) = (x , y , z ,w ).
The tangent hyperplane at this point can be written as:

w − 7 = ∇f (2, 1, 3) · (x − 2, y − 1, z − 3) = 14x + 4y − 6z − 14
or

14x + 4y − 6z − w = 7.



Monday

We start using calculus in different applications, and get ready for
unconstrained optimization.

1 Homogeneous Functions and Euler’s Theorem
2 Mean Value Theorem
3 Taylor’s Theorem

Problem Set 10
This problem set is extremely important to understand the definitions we covered
today.
No need to work on it today before the test, but please work on it during the
weekend.
Eric will cover both problem Set 10 and 11 in Section on Monday.


