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Tracking down gauge: an ode to the constrained
Hamiltonian formalism

JOHN EARMAN

1 Introduction

Like moths attracted to a bright light, philosophers are drawn to glitz. So in dis-
cussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have
tended to focus on examples such as Yang–Mills theories and on the mathematical
apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern
elementary particle physics, they are only a special case of a much broader class of
gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be
the right formalism to illuminate the structure of Yang–Mills theories, the strength
of this apparatus is also its weakness: the fibre bundle formalism is very flexible
and general, and, as such, fibre bundles can be seen lurking under, over, and around
every bush. What is needed is an explanation of what the relevant bundle structure
is and how it arises, especially for theories that are not initially formulated in fibre
bundle language.

Here I will describe an approach that grows out of the conviction that, at least
for theories that can be written in Lagrangian/Hamiltonian form, gauge freedom
arises precisely when there are Lagrangian/Hamiltonian constraints of an appro-
priate character. This conviction is shared, if only tacitly, by that segment of
the physics community that works on constrained Hamiltonian systems.1 The ap-
proach taps into one of the root notions of gauge transformations – namely, that
of transformations that connect equivalent descriptions of the same state or history
of a physical system – and one of the key motivations for seeking gauge free-
dom – namely, to take up the slack that would otherwise constitute a failure of
determinism.

1 Here is one explicit expression of that conviction: ‘It is well known that all the theories containing gauge
transformations are described by constrained systems’ (Gomis, Henneaux, and Pons, 1990, p. 1089). The con-
viction is all but explicit in Henneaux and Teitelboim (1992), the standard reference on the quantization of
gauge systems, which opens with a long and detailed treatment of constrained Hamiltonian systems. In section
7 below I will indicate a way in which this conviction can be challenged.
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2 Noether’s theorems, constrained Hamiltonian systems, and all that

The literature on gauge theories is filled with talk about ‘global’ and ‘local’ sym-
metries, talk which is annoying both because it is often unaccompanied by any
attempt to make it precise and because it is potentially very misleading (e.g. a
global mapping of the spacetime onto itself can count as a ‘local’ symmetry in the
relevant sense of corresponding to a gauge transformation). One way to get a grip
on the global vs. local distinction is to place it in the context of Noether’s two theo-
rems.2 Both theorems apply to theories whose equations of motion or field equations
are derivable from an action principle and, thus, are in the form of (generalized)
Euler–Lagrange (EL) equations. And both concern variational symmetries, that is,
a group G of transformations that leave the action A =

∫
!

L(x, u, u(n)) d px invari-
ant, where x = (x1, . . . , x p) stands for the independent variables, u = (u1, . . . , ur )
are the dependent variables, and the u(n) are derivatives of the dependent variables
up to some finite order n with respect to the xi .3 Every such variational symmetry
is a symmetry of the EL equations L A = 0, A = 1, 2, . . . , r ; that is, a variational
symmetry carries solutions of the EL equations into solutions. The converse, how-
ever, is not guaranteed to hold, e.g. it is often the case that scaling transformations
are symmetries of the EL equations but are not variational symmetries.

Noether’s first theorem concerns the case of an s-parameter Lie group Gs , which
I take to be the explication of the (badly chosen) term ‘global symmetry’. The
theorem states that the action admits such a group Gs of variational symmetries iff
there are s linearly independent combinations of the EL expressions L A which are
divergences, i.e. there are s p-tuples P j = (P1

j , . . . , P p
j ), j = 1, 2, . . . , s, where

the Pi
j are functions of x, u, and u(n) such that

Div (P j ) =
∑

A

cA
j L A, j = 1, 2, . . . , s (1)

where the cA
j are constants, Div (P j ) stands for

p∑
i=1

Di Pi
j , and Di is the total deriva-

tive with respect to xi . Thus, as a consequence of the EL equations there are s
conservation laws

Div (P j ) = 0, j = 1, 2, . . . , s. (2)

2 These theorems were presented in Noether (1918). For relevant historical information, see Kastrup (1987) and
Byers (1999). For a modern presentation of the Noether theorems, see Olver (1993), Brading (2002), and Brading
and Brown (this volume).

3 The transformationsG ! g : (x, u) → (x′, u′) may depend on both the independent variables x and the dependent
variables u. Noether’s theorems can be generalized to handle transformations that depend on the u(n) as well
(see Olver, 1993), but these generalized transformations will play no role here. But what is relevant here is the
fact that Noether’s original theorems can be generalized to handle so-called divergence (variational) symmetries
that leave the action invariant only up to a term of the form

∫
∂! Div (B), where the variation of B vanishes on the

boundary ∂!. For example, the Galilean velocity boosts do not leave the familiar action for Newtonian particle
mechanics invariant, but these boosts are divergence (variational) symmetries. This is crucial in deriving the
constancy of the velocity of the centre of mass of the system. Noether does not seem to have been aware of this
fact. From here on when I speak of variational symmetries I will mean divergence (variational) symmetries.
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The P j are called the conserved currents. In some cases these conservation laws
can be written in the form Dt T + div(X ) = 0, where div is the spatial divergence.
Then if the flux density X vanishes on the spatial boundary of the system, the spatial
integral of the density T is a constant of the motion. It is well to note that there are
equations of motion (or field equations) which cannot be derived from an action
principle, and in such cases there is no guarantee that a symmetry of the equations
of motion will give rise to a corresponding conserved quantity.4

A concrete application of Noether’s first theorem is provided by interacting point
masses in Newtonian mechanics, provided that the equations of motion follow
from an action principle. The requirement that the inhomogeneous Galilean group
is a variational symmetry entails the conservation of energy, angular and linear
momentum, and the uniform motion of the centre of mass. Conversely, the existence
of these conservation laws entails that the action admits a 10-parameter Lie group
of variational symmetries.

Noether’s second theorem is concerned with the case of an infinite-dimensional
Lie group G∞s depending on s arbitrary functions h j (x), j = 1, 2, . . . , s, of all of
the independent variables. This I take to be the explication of the (badly chosen) term
‘local symmetries’. The theorem states that the action admits such a group G∞s of
variational symmetries iff there are s dependencies among the EL equations, in the
form of linear combinations of the L A and their derivatives, which vanish identically
(also known as ‘generalized Bianchi identities’). Since the EL equations are not
independent, we have a case of underdetermination, and as a result the solutions
of these equations contain arbitrary functions of the independent variables – an
apparent violation of determinism since the initial data do not seem to fix a unique
solution of the EL equations.

Now comes an insight of Noether’s that is important enough to be labelled
the third Noether theorem. Suppose that G∞s possesses a rigid Lie subgroup Gs

that arises from fixing h j (x) = α j = const. Then each of the conserved currents
P j , corresponding to the invariance under Gs by Noether’s first theorem, can be
written as a linear combination of the EL expressions L A plus the divergence of an

antisymmetric quantity: Pi
j =

r∑
A=1

L Aξ Ai
j +

p∑
k=1

Dk Xik
j , where the ‘superpotentials’

Xik
j are functions of x, u, and u(n), and Xik

j = −Xki
j . Thus, on any solution to the

EL equations Div (P j ) =
p∑

i,k=1
Di Dk Xik

j ≡ 0. In this case the conservation laws

(2) were dubbed ‘improper’ by Noether. If the independent variables are spacetime
coordinates and x4 is the time coordinate, the charges Q j associated with the
conserved currents of improper conservation laws are defined by the spatial volume

4 See section 7 below for a discussion of the issue of what equations of motion can be derived from an action
principle.
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integrals
∫

V3
P4

j d3x =
∫

V3

4∑
k=1

Dk X4k
j d3x =

∫
V3

3∑
k=1

Dk X4k
j d3x , which are equal to

∫
σ

3∑
k=1

nk X4k
j dσ , where σ is the 2-surface bounding the 3-volume V3, and nk is

the unit normal to the surface. In electromagnetism this relation expresses the
charge in a spatial volume as the flux of the electric field through the bounding
surface. The upshot is that the content of improper conservation laws amounts to a
Gauss-type relation.5 The conservation law associated with the conserved current
P j will be completely trivial if P j vanishes on any solution of the EL equations;
this happens just in case the total divergence of the superpotential for P j vanishes.
Finally, it is worth mentioning that there is a converse for Noether’s third theorem;
namely, if corresponding to a non-trivial variational symmetry there is a conserved
quantity that can be written as a linear combination of the EL expressions and the
divergence of a superpotential, then there is an infinite dimensional Lie group of
variational symmetries and the EL equations are underdetermined (see Olver, 1993,
section 5.3).

In cases where Noether’s second theorem applies there are also what physicists
call ‘strong conservation laws’ which hold ‘off shell’, i.e. regardless of whether
the EL equations hold or not. These strong laws, which are consequences of the
Bianchi identities, should not be confused with improper conservation laws.

To return to the main theme: the underdetermination encountered in Noether’s
second theorem points to one of the principal roots of the notions of gauge and gauge
transformation. In one of its main uses, a ‘gauge transformation’ is supposed to be
a transformation that connects what are to be regarded as equivalent descriptions
of the same state or history of a physical system. And one key motivation for
seeking gauge freedom is to take up the slack that would otherwise constitute
a breakdown of determinism: taken at face value, a theory which admits ‘local’
gauge symmetries is indeterministic because the initial value problem does not
have a unique solution; but the apparent breakdown is to be regarded as merely
apparent because the allegedly different solutions for the same initial data are to
be regarded as merely different ways of describing the same evolution. Putting
the point in different terminology, the evolution of the genuine or gauge-invariant
quantities (or ‘observables’) is manifestly deterministic.

Now the obvious danger here is that determinism will be trivialized if, whenever
it is threatened by non-uniqueness, we stand willing to sop up the non-uniqueness
in temporal evolution with what we regard as gauge freedom to describe the evolu-
tion in different ways. Is there then some non-question begging and systematic way

5 For an interesting discussion of how the distinction between proper and improper conservation laws illuminates
Hermann Weyl’s work on gauge theories, see Brading (2002).
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to identify gauge freedom and to characterize the observables? The answer is yes,
but specifying the details involves a switch from the Lagrangian to the constrained
Hamiltonian formalism. To motivate that switch, let me note that, subject to some
technical provisos, if one is in the domain of Noether’s second theorem (i.e. the ac-
tion admits ‘local’ symmetries – a group G∞s of variational symmetries), as I have
been assuming is the case for gauge theories, then the Lagrangian density (more
properly, its Hessian) is singular (see Wipf, 1994), and the Legendre transformation
which defines the canonical momenta shows that these momenta are not all inde-
pendent but must satisfy a family of constraints. Hence, one is in the domain of the
constrained Hamiltonian theories. Following Dirac (1950; 1951; 1964) one then
identifies gauge transformations as mappings of the phase space that are generated
by a subset of the constraints.6 To illustrate what this means and to underscore the
point that the key ideas about gauge arise in the humblest settings, I will concentrate
in the following section on finite-dimensional systems.

3 Gauge transformations and first-class Hamiltonian constraints7

In this section I confine attention to systems where dim(Q) = N < ∞, Q being
the configuration space. I further restrict attention to first-order Lagrangians
L(qi , q̇ i ), i = 1, 2, . . . , N , q̇ i := dqi

dt , and assume in addition that the Lagrangians
are independent of the time t . In this setting the EL equations assume their familiar
form

d
dt

(
∂L
∂ q̇n

)
− ∂L

∂qn
= 0, n = 1, 2, . . . , N (3)

These equations can be rewritten as

q̈m
(

∂2L
∂ q̇m∂ q̇n

)
= ∂L

∂qn
− q̇m

(
∂2L

∂qm∂q̇n

)
. (4)

When the Hessian matrix Wi j := ( ∂2 L
∂ q̇ i ∂ q̇ j ) is singular, one cannot solve for q̈m in

terms of the positions and velocities, and determinism (apparently) fails because
arbitrary functions of time appear in the solutions and, thus, initial data will not
single out a unique solution. A way to recoup the fortunes of determinism appears
in the Hamiltonian treatment. But before turning to that treatment, I need to define
another structure.

Setting vk := q̇k and αi := ∂L
∂qi − ∂2 L

∂vi ∂qk v
k , the EL equations (4) can be rewritten

as

q̈m Wmn = αi . (5)
6 The constrained Hamiltonian formalism was developed simultaneously by Peter Bergmann and co-workers;

see, for example, Bergmann (1949) and Bergmann and Brunings (1949).
7 The general reference for this section is Henneaux and Teitelboim (1992).
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So if the null vector fields of the Hessian are Vρ := γ i
ρ

∂
∂vi , the first-generation

Lagrangian constraints are

χ (1)
ρ := αiγ

i
ρ = 0, ρ = 1, 2, . . . , R < N . (6)

Requiring that these constraints be preserved by the motion produces a second
generation of Lagrangian constraints, etc. Eventually this process terminates. The
final Lagrangian constraint manifold C)

F is then the submanifold of the Lagrangian
velocity phase space *(q, v) := T (Q) where all of the constraints hold.

Passing to the Hamiltonian phase space *(q, p) := T ∗(Q) is accomplished by the
Legendre transformation F L : *(q, v) → *(q, p), where F L(qi , vi ) = (qi , pi )
with the canonical momenta given by pi := ∂L

∂vi . When the Hessian is singular,
the canonical momenta are not all independent but must satisfy primary con-
straints

φ(0)
µ (q, p) = 0, µ = 1, 2, . . . , J < N (7)

that follow from the definitions of the momenta. These equations define the pri-
mary Hamiltonian constraint manifold Ch

o . The Hamilton–Dirac (HD) equations of
motion take the form

q̇ i =
Ch

o

{qi , HT } (8a)

ṗi =
Ch

o

{pi , HT }. (8b)

Here =
Ch

o
means equality on Ch

o and {, } is the usual Poisson bracket. The total Hamil-
tonian HT is Hc(q, p) + λµφ(0)

µ (q, p), where the canonical Hamiltonian Hc is any
function of (q, p) satisfying Hc(q, p) = ∂L

∂q̇ i q̇ i − L . The Lagrange multipliers λµ

appearing in the total Hamiltonian can be arbitrary functions of time. Requiring
that the primary constraints be preserved by the motion can lead to secondary con-
straints. Requiring that the secondary constraints be preserved by the motion can
produce tertiary constraints, etc. The final Hamiltonian constraint manifold Ch

F ,
which is reached after a finite number of steps, is the submanifold of T ∗(Q) where
all the constraints are satisfied. A constraint is said to be (final) first class just in
case its Poisson bracket with any constraint ‘vanishes weakly’, i.e. is zero when
evaluated on Ch

F . On Ch
F where (8a) and (8b) have solutions, the total Hamiltonian

can be written as HT = H F
c + uµ f ψ (0)

µ f
, where ψ (0)

µ f
, µ f = 1, 2, . . . , K , are the final

primary first-class constraints and H F
c is a particular canonical Hamiltonian which

happens to be a first-class function, i.e. its Poisson bracket with every constraint
vanishes weakly.

Under the regularity conditions that the Legendre map has constant rank and
that the rank of the Poisson bracket of constraints is constant, the Hamiltonian and
Lagrangian treatments of constrained systems are equivalent in the sense that for
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any solution qi (t) of the EL equations, there is a solution (qi (t), pi (t)) of the HD
equations, and vice versa (see Batlle et al., 1986).

We are now in a position to be more specific about what counts as a gauge
transformation in the Hamiltonian formalism. The first version treats a gauge trans-
formation as a point transformation on the Hamiltonian phase space *(q, p).

Def. 1. (Hamiltonian version). (q1, p1), (q2, p2) ∈ Ch
F are Hamiltonian gauge

equivalent iff there is a (q0, p0) ∈ Ch
F such that (q1, p1) and (q2, p2) are both obtained

from (q0, p0) as solutions to the HD equations in the same lapse time .t.

The motivation for this definition starts with the conviction that the physical state
of the system at any given time is completely specified by a point in phase space,
and then proceeds to the realization that, if the EL/HD equations for a constrained
system are to determine the physical state at later times, the physical-state-to-phase-
space correspondence must be one–many.8 The slack of the ‘many’ side is identified
as gauge freedom. Using Def. 1 we can proceed to relate the gauge freedom to the
constraints. Note first that any (final) first-class constraint can be obtained from
an iterative procedure that starts with the primary first-class constraints and suc-
cessively takes the Poisson bracket of the preceding stage with H F

c . It is natural
to conjecture that (i) all (final) first-class constraints generate Hamiltonian (point)
gauge transformations, and (ii) any (point) Hamiltonian gauge transformation is
generated by the (final) first-class constraints. This will be true provided that the
ancestry of all the first-class constraints is untainted in the sense that the iterative
procedure which generates the first-class constraints does not pass through an in-
effective constraint, i.e. a constraint whose gradient vanishes weakly (see Cabo
and Louis-Martinez, 1990).9 Geometrically the gauge orbits on Ch

F are the integral
curves of the vector field formed by linear combinations of the gradients of the
first-class constraints. This vector field is null with respect to the pre-symplectic
form induced on Ch

F by the symplectic form for *(q, p).10

With the proviso that ineffective constraints are absent, the results (i) and (ii)
justify the Dirac slogan ‘The gauge transformations are those transformations

8 As Henneaux and Teitelboim put it: ‘[A]lthough the physical state is uniquely defined once the set of p’s and
q’s is given, the converse is not true – i.e., there is more than one set of values of the canonical variables
representing a given physical state. To see how this conclusion comes about, we notice that if we give an initial
set of canonical variables at time t1and thereby completely define the physical state at that time, we expect the
equations to fully determine the physical state at other times. Thus, by definition any ambiguity in the value of
the canonical variables at t2 )= t1 should be a physically irrelevant ambiguity’ (1992, pp. 16–17).

9 For examples of what can go wrong when ineffective constraints are present, see Henneaux and Teitelboim
(1992, pp. 19–20) and Gotay and Nester (1984).

10 The mathematically precise way to formulate Hamiltonian mechanics uses a symplectic form ω that is
a non-degenerate two-form on the phase space T ∗(Q). The Poisson bracket for phase functions is de-
fined by { f, g} := ω(d f, dg). Locally, coordinates (qi , pi ), i = 1, 2, . . . , N , can be chosen so that { f, g} =
∑

i

(
∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

)
.
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generated by the first-class constraints.’ Adding non-primary first-class constraints
with their Lagrange multipliers to the total Hamiltonian results in what is called the
extended Hamiltonian. This extension is harmless (and pointless) when ineffective
constraints are absent. But if ineffective constraints are present the extension can be
pernicious in that it can break the equivalence of the Lagrangian and Hamiltonian
treatments.11

There is, of course, a Lagrangian version of Def. 1. The equivalence of the La-
grangian and Hamiltonian approaches means that the Lagrangian and Hamiltonian
(point) gauge transformations have a natural correspondence. So if there are no inef-
fective Hamiltonian constraints, every first-class Hamiltonian constraint generates
a Hamiltonian (point) gauge transformation which has a corresponding Lagrangian
(point) gauge transformation, and every Lagrangian (point) gauge transformation
has a corresponding Hamiltonian (point) gauge transformation generated by a first-
class constraint.

Given these nice equivalences of the Lagrangian and Hamiltonian treatments, it
is not surprising that, despite the fact that the final Lagrangian and Hamiltonian
constraint manifolds can have different dimensions, the two treatments give the
same counts for the number of physical degrees of freedom. Count these degrees of
freedom in the Hamiltonian and Lagrangian approaches respectively by the dimen-
sions of Ch

G ⊂ Ch
F and C)

G ⊂ C)
F , where the subscript G indicates the submanifold

obtained by killing the gauge freedom by gauge fixing conditions. If there are
no ineffective constraints, dim(Ch

G) = dim(C)
G) = 2N − M − P , where N is the

dimension of the configuration space, M is the number of Hamiltonian constraints,
and P is the number of first-class Hamiltonian constraints (see Gràcia and Pons,
1988).

It remains to link the notion of gauge transformation detailed above with the
Noether transformations. There appears to be a mismatch since the former are
point transformations while the latter are mappings of solutions onto solutions.
To bridge the gap, one can introduce a notion of gauge transformation connecting
solutions. The Hamiltonian version is given in:

Def. 2. Two solutions (q(t), p(t)) and (q ′(t), p′(t)) of the HD equations are gauge
equivalent just in case for each t the points of phase space they determine are gauge
equivalent in the sense of Def. 1.

A mapping G : T (Q)∗ × R → R of the form G(q, p, t) =
∑
k≥1

εk(t)Gk(q, p),

11 Thus, without the restriction of no ineffective constraints, ‘Dirac’s conjecture’ (as it is called in the literature)
that all first-class constraints generate gauge transformations is false.
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where εk(t) is the kth time derivative of the gauge generator ε(t), is a solution
gauge transformation provided that the Gk satisfy the chain condition

G1 ≡ PFC
{PFC , Gk} ≡ PFC

{Gk, H} + Gk+1 ≡ PFC (9)

where ‘PFC’ stands for a primary first-class constraint and H is a first-class Hamil-
tonian, and provided that the maximum value of k is the number of steps in the
Dirac consistency algorithm (see Gràcia and Pons, 1988; Gomis et al., 1990).12

Corresponding to this transformation there will be a Lagrangian gauge trans-
formation that maps any solution to the EL equations to another solution that is
gauge equivalent to the first in the sense analogous to Def. 2. However, there is no
guarantee that this Lagrangian gauge transformation is a Noether transformation in
the sense that it leaves the action invariant (up to a total divergence). But it is known
that the latter will hold if all of the Hamiltonian constraints are primary first class.
In the opposite direction, a pair of gauge equivalent solutions to the EL equations
has a corresponding pair of gauge equivalent solutions to the HD equations where
the solution gauge transformation connecting them is of the form given above.

The final concept I will introduce for the Hamiltonian formalism is that of an
observable or gauge independent quantity. There are two equivalent ways to make
this precise: an observable can be defined to be a function from the Hamiltonian
phase space *(q, p) to R which has weakly vanishing Poisson brackets with the
first-class constraints or, equivalently, which is constant along the gauge orbits.
An observable in this sense corresponds to a function on the reduced phase space
obtained by quotienting *(q, p) by the gauge orbits.

The reader who is encountering the apparatus of constrained systems for the first
time may be aghast at the seeming complexity. I have no comfort to offer. For not
only have I slurred over some of the complexities in my overly brief presentation
above, but I have additional bad news as well. Many of the systems one wants to
study in physics have infinite-dimensional configuration spaces, and the relatively
simple results reported above for finite-dimensional systems do not always carry
over to the infinite-dimensional case. Nevertheless, in what follows I will simply
forge ahead under the assumption that in constrained systems gauge is generated
by the first-class Hamiltonian constraints.13

In closing this section I want to underscore the point that the use of the recom-
mended apparatus for getting a fix on gauge takes the overcoming of an apparent
12 The restriction to the case of no ineffective constraints is also in force here.
13 As far as I am aware there are no proofs in the literature of the infinite-dimensional analogues of all of the basic

results quoted above for finite dimensional systems. Belot (2002) provides a detailed discussion of a large class
of gauge theories that arises when the conserved quantities of a Hamiltonian system are set equal to zero. This
class contains Yang–Mills type theories but not all constrained Hamiltonian systems.
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underdetermination to be the key motivation for recognizing gauge freedom. It is
well to note, however, that other motivations can operate, and these motivations
may produce a different verdict on gauge. Suppose, for example, that you want to
be a relationist about space and time, and also that you want to acknowledge the
striking success in the use of Minkowski spacetime for formulating the theories
of modern physics. You could reconcile these two desires by saying that the rela-
tional spatiotemporal structure of physical events conforms to those prescribed by
Minkowski spacetime while at the same time denying that physical events are in any
literal sense located in a spacetime container. But to make such a stance consistent
requires treating a Poincaré boost of the matter fields on Minkowski spacetime as a
gauge transformation in the sense that it produces not a different physical situation
but a different representation of the same physical situation. By contrast, an ap-
plication of the constraint apparatus to Maxwell electromagnetic theory and other
standard special relativistic theories does not produce the verdict that the Poincaré
group is a gauge group. The difference between the two motivations for seeing
gauge freedom is brought out by the contrasting attitudes towards what counts as
an observable. A non-relationist who is guided by the constrained Hamiltonian
formalism sees no interesting gauge freedom in the familiar special relativistic
treatment of electromagnetism and, therefore, will treat the electromagnetic field
as an observable. By contrast, the relationist is (on my reading) committed to deny-
ing that the electromagnetic field is a genuine physical observable since, by her
lights, this field is not gauge invariant; and by her lights, only non-local quantities,
such as the spacetime volume integral of the field energy, will pass muster. Lest
one think that this result is a reductio of relationism, the relationist can note that
worse is to follow in the context of the General Theory of Relativity (GTR). But in
contrast to special relativistic theories, there is no choice to be made in GTR where
the constraint structure of the theory dictates that local fields are not observables
(see section 5).

4 A toy example

Since the discussion thus far has been both abstract and complicated, it may assist
the reader to work through a concrete toy example that illustrates some of the above
concepts. Those of you who have read Maxwell’s (1877) Matter and Motion may
have been puzzled by his apparently contradictory claim that acceleration is relative
even though rotation is absolute (see sections 32–35 and 104–105). Maxwell is
consistent if we take him to be proposing that physics be done in the setting of
what I have dubbed Maxwellian spacetime. Like Newtonian spacetime, Maxwellian
spacetime has absolute simultaneity, the E3 structure of the instantaneous space,
and a time metric, but it eschews the full inertial structure in favour of a family of
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relatively non-rotating rigid frames.14 In terms of coordinate systems adapted to
the absolute simultaneity, the E3 structure, and the privileged non-rotating frames,
the symmetry transformations of Maxwellian spacetime are

x → x′ = Rx + a(t) (Max)
t → t ′ + const.

where R is a constant rotation matrix and a(t) is an arbitrary smooth function
of time. In such a setting it seems hopeless to have determinism if, as ordinarily
assumed, positions and velocities of particles are regarded as observables. For we
can choose a(t) such that it is zero for all t ≤ 0 and non-zero for t > 0. Since a
symmetry of the spacetime should be a symmetry of the equations that specify the
permitted particle motions, the application of (Max) to a solution of the equations
of motion will produce another solution that agrees on the particle trajectories of
the first solution for all past time but disagrees with it in the future – an apparent
violation of even the weakest form of determinism.

Now let’s see how this example gets reinterpreted when cranked through the
Lagrangian/constrained Hamiltonian formalism. An appropriate Lagrangian in-
variant under (Max) is

L =
∑ ∑

j<k

m j mk

2M
(ṙ j − ṙk)2 − V (|r j − rk |), M :=

∑

i

mi . (10)

The transformations (Max) are global mappings of Maxwellian spacetime onto
itself, but they are ‘local’ in that Noether’s second theorem applies since (Max)
contains an infinite-dimensional group G∞3 whose parameters are arbitrary func-
tions of t , the only independent variable in the action

∫
L dt . It is easy to verify that

the Hessian matrix for (10) is singular. The EL equations are:

d
dt

(
mi

(
ṙi − 1

M

∑

k

mk ṙk

))
= ∂V

∂ ṙi
. (11)

These equations do not determine the evolution of the particle positions uniquely: if
ri (t) is a solution, so is r′

i (t) = ri (t) + f(t), for arbitrary f(t), confirming the intuitive
argument given above for the apparent breakdown of determinism. Determinism
can be restored by regarding the transformation ri (t) → ri (t) + f(t) as a gauge
transformation.

Now let’s switch to the Hamiltonian formalism and find the constraints. The
canonical momenta are:

pi := ∂L
∂ ṙi

= mi

M

∑

k

mk(ṙi − ṙk) = mi ṙi − mi

M

∑

k

mk ṙk . (12)

14 For details, see Earman (1989, chapter 2, section 3).
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These momenta are not independent but must satisfy three primary constraints,
which require the vanishing of the x , y, and z components of the total momentum:

φα =
∑

i

pα
i = 0, α = 1, 2, 3. (13)

These primary constraints are the only constraints – there are no secondary con-
straints – and they are first class. These constraints generate in each configuration
variable ri the same gauge freedom; namely, a Euclidean shift given by the same
arbitrary function of time. The gauge-invariant quantities include such things as
relative particle positions and relative particle velocities.

In this toy example there is simple connection between the senses of gauge
freedom derived from the Lagrangian and Hamiltonian approaches. In more com-
plicated cases, however, the connection between the two approaches is not so trans-
parent.

5 The General Theory of Relativity as a gauge theory

The Hilbert action for the source-free Einstein gravitational field equations reads∫
M R

√−g d4x , where R is the Ricci scalar and g := det(gi j ), gi j being the coor-
dinate components of the spacetime metric. The diffeomorphism group diff (M)
of the spacetime manifold M, which contains arbitrary functions of the indepen-
dent variables in the action (here the spacetime coordinates xi , i = 1, 2, 3, 4), is a
variational symmetry. Thus, Noether’s second theorem applies, telling us that we
have a case of underdetermination. We expect that in the Hamiltonian formulation
there will be constraints that generate non-trivial gauge. Our expectations are not
disappointed. The configuration variables (the qs) are Riemann 3-metrics, inter-
preted as giving the intrinsic geometry of a 3-manifold that is to be embedded as a
time slice of spacetime, and the conjugate momentum variables (the ps) are tensor
fields related to the exterior curvature of the 3-manifold. When the crank of the
Dirac algorithm is turned, it is found that the constraints are all primary first class.
That sounds nice, but in fact when the details are unpacked three surprises/puzzles
are revealed.

There are two families of constraints: the momentum constraints and the
Hamiltonian constraints.15 When the Poisson bracket algebra of these constraints
is computed, it is found that it does not close, so this algebra is not a Lie algebra.
This means that a defining feature of Yang–Mills theories is missing from the most
natural formulation of GTR as a Hamiltonian theory. Now some writers want to
reserve the label ‘gauge theory’ for Yang–Mills theories. This seems to me to be
a merely terminological matter – if you do not wish to call GTR a gauge theory
15 ‘Families’ because for each point of space there is a momentum constraint and a Hamiltonian constraint.
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because it is not Yang–Mills, that is fine with me; but please be aware that the con-
strained Hamiltonian formalism provides a perfectly respectable sense in which the
standard textbook formulation of GTR using tensor fields on differentiable mani-
folds does contain gauge freedom. What goes beyond label-mongering is the issue
of why GTR fails to be a Yang–Mills theory and, more generally, what features
separate constrained Hamiltonian theories that are Yang–Mills from those which
are not. Some important results of these matters have been obtained by Lee and
Wald (1990), but these results are too technical to review here.

A second puzzle is how to find, among the Dirac gauge transformations on the
Hamiltonian phase space of GTR, a counterpart of the action of the diffeomorphism
group of spacetime. The most obvious way to identify a counterpart by finding a ho-
momorphic copy of the Lie algebra of diff (M) in the constraint algebra is blocked
by the fact that the latter isn’t a Lie algebra. One resolution of the puzzle is given
by Isham and Kuchař (1986a; 1986b) who show that if the embedding variables
(which describe how a 3-manifold is embedded as an initial value hypersurface
of spacetime) and their conjugate momenta variables are adjoined to the phase
space of GTR, there is a natural homomorphism of the Lie algebra of spacetime
diffeomorphisms into the Poisson bracket algebra of constraints on the extended
phase space. An alternative approach is taken by Ashtekar and Bombelli (1991),
who show that Hamiltonian mechanics for general relativity does not require a
(3 + 1)-cotangent bundle structure. Instead of taking the phase space of the theory
to be the space *(q, p) of instantaneous states, they work with the space *̂ of entire
histories or solutions to the Einstein field equations, which implies that dynamics
is implemented not by a mapping from one state to another state in the same
solution but as a mapping from one solution to another solution. The space *̂ has
a presymplectic structure given by a degenerate 2-form ω̂. There is no constraint
surface, as in the (3 + 1) formulation; rather, the gauge directions Y are given
directly by the null vectors of ω̂. It turns out that two solutions lie on the same
gauge orbit (i.e. integral curve of the gauge field Y ) iff they are diffeomorphically
related.

The third and most contentious puzzle arises from the fact that since the
Hamiltonian constraints generate the motion, motion is pure gauge, and the observ-
ables of the theory are constants of the motion in the sense that they are constants
along the gauge orbits. Taken at face value, the gauge interpretation of GTR implies
a truly frozen universe: not just the ‘block universe’ that philosophers endlessly carp
about – that is, a universe stripped of A-series change or shifting ‘nowness’ – but
a universe stripped of its B-series change in that no genuine physical magnitude
(= gauge-invariant quantity) changes its value with time. Philosophers of science
have generally ignored this puzzle. But it deserves a resolution, either by showing
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how the ‘no change’ consequence can be avoided or by showing how the conse-
quence can be reconciled with our perceptions of a world filled with (B-series)
change. Since I have given my own resolution at length elsewhere, I will not repeat
it here (see Earman, 2002). But lest one think that the problem depends on pecu-
liarities of infinite-dimensional systems or of general relativity, I will mention that
an analogue arises for a subclass of the humble theories discussed in the preced-
ing sections. These are so-called reparameterization invariant Lagrangian theories
where the action is invariant under t → f (t) for arbitrary f (t). For such theories
the canonical Hamiltonian, if non-zero, is a first-class constraint so that motion is
pure gauge.

Finally, I will mention that the analysis of gauge recommended here helps to
illuminate some of the issues surrounding the never-ending debate about the nature
and status of the requirement of general covariance. What makes the issues so
difficult to disentangle is that as the debate unfolded, every confusion it was possible
to make was in fact made – coordinate transformations were confused with point
transformations, relativity principles were confused with gauge principles, etc.16

This is not the place to attempt a disentanglement, and I will have to be content
with noting that much of the confusion is swept away by distinguishing two forms
of the requirement of general covariance. The weak requirement demands that the
equations of motion of a theory are valid in an arbitrary coordinate system (or,
equivalently, that the equations should be covariant under an arbitrary coordinate
transformation). Assuming that nature can be fully described by geometric object
fields, this requirement is a restriction on the form rather than the content of a
theory. The strong requirement demands that the spacetime diffeomorphism group
is a gauge group of the theory. If the recommended Hamiltonian constraint apparatus
is used to detect gauge freedom, then it is obvious that a theory can satisfy the weak
requirement without at the same time satisfying the strong requirement. However,
one can wonder whether the strong requirement, like its weak sister, is also a matter
of form rather than content. That is, can a theory that satisfies the weak but not the
strong requirement always be rewritten in a form that conforms to the latter? The
application of the constraint formalism reveals that monkeying with a theory so as
to make it satisfy strong general covariance may change the constraint structure of
the theory and, thus, what counts as an observable (= gauge-invariant quantity).
Arguably, such a change amounts to a change in the content rather than the form
of the theory. It then becomes an empirical question as to whether nature is best
described in terms of the observables of the original or of the new theory.17

16 For a historical review of the debate, see Norton (1993).
17 See Earman, ‘Once more general covariance’, unpublished manuscript.
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6 The fibre bundle apparatus

How does the relevant fibre bundle structure arise for theories that are not presented
in bundle-theoretic language? The constrained Hamiltonian formalism provides the
basis of an answer. One would like it to be the case that when the reduced phase
space *̃ of a constrained Hamiltonian system is formed by quotienting the con-
straint surface C by the gauge orbits, these orbits are the fibres of a bundle with
base space *̃. Suppose that the first-class constraints form a Lie algebra and that
this algebra exponentiates to give a Lie group G which acts freely on C. And
suppose that the quotient C/G is a manifold. Then our desire is satisfied in that
C/G will be the base space of a G-bundle whose fibres are the orbits of the group
action. In practice, however, some of the stated suppositions may fail. For in-
stance, although *̃ always exists as a topological space, it may lack a manifold
structure – GTR is a particular example.18 If one believes that the fibre bundle
apparatus captures an essential feature of nature, then one could posit that the
emergence of the appropriate bundle structure is a necessary condition for genuine
physical possibility. This is an interesting idea, but obviously it requires critical
examination.

Even for paradigm cases of gauge theories that wear their fibre bundle structure on
their sleeves – e.g. Yang–Mills theories – understanding the geometry of constraints
is crucial to quantization, as we will see in section 8.

7 The reach of the constraint apparatus

In order to produce simple and understandable examples I have emphasized appli-
cations where, from the Lagrangian point of view, the gauge transformations are
purely transformations of the independent variables19 of the action and where these
variables are identified with spatiotemporal variables. But nothing in the constraint
formalism depends on these simplifying assumptions, and the formalism serves to
identify the gauge freedom even when these assumptions do not hold.

However, there is one obvious and absolute limitation of the apparatus: it does
not apply to equations of motion that are not derivable from an action principle.
This might seem to be a mild limitation because almost all of the candidates for
fundamental equations of motion in modern physics are derivable from an action
principle. But appearances can be deceptive; in particular, the apparent ubiquity
of equations of motion that are derivable from an action principle might repre-
sent a selection effect deriving from the facts that modern physicists always have

18 In this case, however, the reduced phase space is not badly behaved since it is the disjoint union of manifolds;
see Fischer and Moncrief (1996).

19 These are sometimes referred to as ‘gauge transformations of the first kind’, whereas transformations depending
only on the dependent variables are referred to as ‘gauge transformations of the second kind’.
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quantization in the back of their minds and that the standard cookbook procedures
for producing a quantization start from a Hamiltonian formulation.

To get a feel for just how strong the limitation really is we would need to know
what the necessary and sufficient conditions are for equations of motion to be
derivable from an action principle. A special case of this problem is what is known
as the Helmholtz problem: Consider a system of Newtonian second-order ordi-
nary differential equations: .i = 0, .i := q̈ i − Fi (qi , q̇ i , t); under what condi-
tions does there exist a Lagrangian L(qi , q̇ i , t) and a non-singular matrix Aik such
that .i = AikELk , where ELk = 0 are the EL equations of L? Helmholtz found a set
of necessary conditions which were later proved to be sufficient as well. Darboux
proved that for n = 1 the Helmholtz conditions can always be satisfied. The case
of n = 2 has also been solved. But the general problem remains unsolved (see, for
example, Sarlet, 1982). Even less is known when more complicated equations of
motion are considered and when singular Lagrangians are permitted.

The issue under discussion is also intimately linked with the status of deter-
minism. Determinism becomes a trivial doctrine if whenever cracks appear in the
doctrine we stand ready to paper them over by seeking gauge freedom. I gave the
impression that the trivialization is halted by providing a principled way to detect
gauge freedom. This impression is badly misleading if the means of detecting gauge
freedom is that of Dirac. Start with any theory whose equations of motion are deriv-
able from an action principle, and suppose that the EL equations do not suffer from
overdetermination but do suffer from underdetermination – they fail to determine
a unique solution from initial data because arbitrary functions of time appear in
the solutions. A cure for this form of indeterminism is always at hand in that in
the constrained Hamiltonian formalism the gauge transformations, as identified by
Dirac’s prescription, are sufficient to sop up the underdetermination. (Of course, it
may happen that the ‘cure’ takes the drastic form of freezing the dynamics, as in
the case of GTR or time reparameterization theories in general.) Thus, to decide
just how a priori or contingent determinism is, it is crucial to know how strong is
the demand that the equations of motion admit a (possibly singular) Lagrangian for-
mulation – the stronger (respectively, weaker) the demand is, the more contingent
(respectively, a priori) determinism is.

In the absence of any convincing argument to the effect that acceptable equations
of motion must be derivable from an action principle, it seems necessary to confront
the issue of how to identify gauge freedom and observables for equations of motion
that are not derivable from an action principle. I know of no systematic approach
to this issue.

Finally, I want to indicate a way in which the conviction that theories containing
gauge freedom are described by constraints can be challenged. Independently of the
desire to save determinism, a motivation for seeing gauge freedom at work comes
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from considerations of observability. Suppose, for example, that one has reasons
for thinking that a complex-valued scalar field ϕ is not observable whereas combi-
nations such as ϕ∗ϕ are. If the action is constructed from such combinations it will
be invariant under the group of transformations of the form ϕ → ϕ′ = exp(iα)ϕ,
∂µα = 0, which might be taken as gauge transformations even though the con-
straint apparatus does not apply since the group parameters do not involve arbitrary
functions of the independent variables. In the case of quantum field theory this
line on gauge leads to what I find to be unacceptable consequences, such as that
unitarily inequivalent representations of the algebra of field operators are gauge
equivalent and, thus, are to be regarded as merely different ways of describing the
same physical situation (see Earman, this volume, Part III). And apart from consid-
erations of quantum field theory, the present motivation for seeing gauge freedom
is potentially confused. That the complex-valued scalar field ϕ is not observable
or measurable is a necessary but not sufficient condition for consigning ϕ to the
category of quantities which are not to be regarded as genuine physical magnitudes
because their values can be changed without changing the real physical situation.
Neverthless, it is important to recognize that there can be a number of different
motivations for seeing gauge at work.

8 The quantization of gauge theories

There are at least four extant approaches to quantization of gauge theories.20 The
first is gauge fixing: fix a gauge and quantize in that gauge. But when one tries to do
this for Yang–Mills theories using the analogues of familiar gauge conditions (e.g.
Lorentz gauge) the procedure may break down. The difficulty is explained by the
fact that the gauge condition may fail to define a global transversal in the constraint
surface, i.e. a hypersurface that meets each of the gauge orbits exactly once.

A second approach is reduced phase space quantization. Quotient out the gauge
orbits to produce the reduced phase space. If this procedure goes smoothly (see
section 10 below) the normal method of quantization can be applied to the resulting
unconstrained Hamiltonian system. This approach faces the practical difficulty of
having to solve the constraints, and even if one overcomes this difficulty one may
find that the reduced phase space has features that complicate the quantization (see
section 10 below).

The third approach is called Dirac constraint quantization. Here the procedure is
to promote the first-class constraints to operators on a Hilbert space and then require
that the vectors in the physical sector of this Hilbert space be annihilated by the
constraint operators. Of course, the forming of the constraint operators is subject

20 The standard reference on this topic is Henneaux and Teitelboim (1992).
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to operator ordering ambiguities. But even modulo such ambiguities, it can happen
that the resulting Dirac quantization is inequivalent to that obtained by reduced
phase space quantization. In such a case, which is the correct quantization? And
how would one tell? I will return to these matters below.

The fourth approach is called BRST quantization after Becchi, Rouet, Stora,
and Tyutin. The idea is to mirror the original gauge symmetry by a symmetry
transformation on an extended phase space obtained by adding auxiliary variables.
The additional phase space variables are chosen so that the BRST symmetry has a
simple form that facilitates quantization.

Apart from technical issues, the point to keep firmly in mind is that it is, presum-
ably, the observables – in the sense of gauge-invariant quantities – of a constrained
system that get promoted to quantum observables – in the sense of self-adjoint
operators on the appropriate Hilbert space. Thus, it is hardly surprising that one of
the key issues in the search for a quantum theory of gravity is what to take as the
appropriate set of observables of classical GTR (see Isham, 1992).

9 The magical gauge argument

In the physics literature there is something called the ‘gauge argument’ that goes
like this. Start with a free field which admits a ‘global symmetry’ and obeys (by
Noether’s first theorem) a ‘global conservation law’. An appeal to relativity theory
and locality is then used to motivate a move from the ‘global’ to a ‘local symmetry’.
But this move necessitates the introduction of a new field that interacts with the
original field (and, perhaps, with itself) in a prescribed way. The success of the
gauge argument in capturing some of the most fundamental interactions in nature
has been taken to indicate that the argument reveals an important strand of the logic
of nature.

I am in agreement with Martin (2002a,b; this volume) who finds the ‘getting
something from nothing’ character of the gauge argument too good to be true. In
particular, a careful look at applications of this argument reveals that a unique theory
of the interacting field results only if some meaty restrictions on the form of the final
Lagrangian are implicitly in operation; and furthermore, the kind of locality needed
for the move from the ‘global symmetry’ (invoking Noether’s first theorem) to the
‘local symmetry’ (invoking Noether’s second theorem) is not justified by an appeal
to the no-action-at-a-distance sense of locality supported by relativity theory. Not
only is there no magic to be found in the gauge argument, but the ‘gauge principle’
that prescribes a move from global to local symmetries for interacting fields can be
viewed as output rather than input: for example, it can be viewed as the product of
a self-consistency requirement (see, for example, Wald, 1986) or as a consequence
of the requirement of renormalizability (see, for example, Weinberg, 1974).
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What is missing is an explanation of the heuristic power of the gauge argument.
That is a task someone else will have to perform.

10 Why gauge theories?

Since the presence of gauge freedom in a theory means that the theory employs
quantities that lead to redundant descriptions in the form of a many–one corre-
spondence between the state descriptions of the theory and the intrinsic physi-
cal state, why shouldn’t the theory be purged of its ‘surplus structure’ (to use
Michael Redhead’s terminology) so as to achieve a one–one correspondence be-
tween state descriptions and physical states? I will now consider a series of possible
responses.

10.1 Obstructions to getting an unconstrained Hamiltonian system

At least two kinds of obstructions can occur. (i) Quotienting out the gauge orbits may
not produce a manifold. This situation occurs for GTR, but here the singularities are
isolated and the reduced phase space is a disjoint union of manifolds (see Fischer
and Moncrief, 1996). (ii) The reduced phase space is a manifold but this manifold
is not the cotangent space of a reduced configuration space.

10.2 Ambiguities in quantization

Suppose now that no obstructions are encountered in passing to a reduced
Hamiltonian phase space. But suppose that reduced phase space quantization gives
a result that is physically inequivalent to Dirac constraint quantization, even al-
lowing for operator ordering ambiguities. And suppose that the latter proves to be
empirically correct. This is certainly a reason not to gauge out. But it also seems
to be a reason to say that the ‘gauge transformations’ are not really gauge trans-
formations, for it seems that relevant information is lost in passing to the reduced
phase space. Such examples, however, may be fanciful. Dirac and reduced phase
space quantization will coincide when the gauge group is unimodular;21 and when
the gauge group is not unimodular and the Dirac and reduced phase space quanti-
zations are at odds, arguably the Dirac procedure is incorrect and a modified Dirac
prescription is needed (see Duval et al., 1991).

10.3 Future extensions and modifications of the theory

A gauge theory could be retained in order to preserve the possibility that a later
development will provide a physically motivated way of breaking the original
21 A group is unimodular if it carries a bi-metric volume.
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gauge symmetry. This consideration has force to the extent that there are historical
examples of such gauge breaking. However, such examples seem to be in short
supply. The Aharonov–Bohm effect is sometimes touted as a relevant example, but
it is better to take the moral of this example to be that gauge-invariant quantities
must include non-local quantities such as the integral of the 4-potential around a
closed loop.

10.4 Convenience

Here it is helpful to contrast various cases. (i) The use of the electromagnetic poten-
tials in formulating Maxwell’s theory seems to be purely a matter of convenience
since Maxwell’s equations can be stated and solved in any given application with-
out use or mention of the potentials. (ii) More than mere convenience is involved
in operating with gauge-dependent quantities in the toy example from section 4 of
particle mechanics in Maxwellian spacetime. One can certainly work with gauge-
independent inter-particle quantities; but for more than three particles, relative
particle distances give an over-complete set of configuration variables for the re-
duced configuration space (see Belot, 2002), and writing unconstrained equations
of motion requires an undemocratic choice of among these quantities. (iii) In our
present state of knowledge, the use of gauge-dependent quantities in GTR – tensor
fields on a manifold – cannot be ascribed to convenience or the desire to avoid an
undemocratic choice. For at present we do not know how to do the mathematics of
GTR purely in terms of the gauge-independent quantities; in particular, the usual
way of working with differential equations is not an option since apparently the
spacetime manifold disappears in the gauge-independent description, whatever ex-
actly that may turn out to be (see section 5). Thus, at present it seems that treating
GTR as a gauge theory is closer to force majeure than to convenience.

In sum, there is no one simple answer to ‘Why gauge?’ The answer will vary
from case to case, and it can range from ‘Because it makes the life of the physicist
easier’ to ‘We don’t seem have a choice in the matter.’ But if the above is a fair
summary, then the verdict must be that we don’t presently have a satisfying answer
to ‘Why gauge?’ since most of the reasons essayed, save for convenience, were of
the in-principle but not-actually-in-practice form.

11 Conclusion

Nothing that I have said above is news to physicists. But it seems to me worth
saying to a philosophical audience. Indeed, when I try to talk about constrained
Hamiltonian systems to even my more knowledgeable colleagues in the philosophy
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of physics, they look at me as if I were speaking a Martian dialect. I certainly do
not want to claim that the constraint formalism constitutes the correct approach
to gauge; indeed, I doubt that there is an approach answering to that description,
for gauge is such a broad and variegated concept that its explication requires the
services of many different approaches and formalisms. But I do want to claim for the
constraint formalism a number of virtues. In particular, among the extant approaches
of which I am aware, it is the one with the broadest scope; for philosophers of science
it has the advantage of immediately connecting to fundamental foundations issues,
such as the nature of observables and the status of determinism; it explains how
and under what conditions a fibre bundle structure emerges for theories which do
not wear their bundle structure on their sleeves; and it calls attention to problems
which arise in attempting to quantize gauge theories.

Independently of the merits of the constraint formalism, I want to urge that in
getting a grip on the gauge concept, philosophers initially eschew the glitz of ele-
mentary particle physics, Yang–Mills theories, fibre bundles, etc., and concentrate
instead on humbler examples. These examples often make it easier to see important
conceptual connections, and they bring out the fact that the gauge concept is im-
portant for understanding not only Yang–Mills theories and theories of elementary
particle physics, but Newtonian and classical relativistic theories as well.
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Isham, C. J., and Kuchař, K. (1986a). ‘Representations of spacetime diffeomorphisms. I:
Canonical parametrized field theories’. Annals of Physics, 164, 316–33.

(1986b). ‘Representations of spacetime diffeomorphisms. II: Canonical
geometrodynamics’. Annals of Physics, 164, 288–315.

Kastrup, H. A. (1987). ‘The contributions of Emmy Noether, Felix Klein and Sophus
Lie to the modern concept of symmetries in physical systems’. In Symmetries in
Physics (1600–1980), ed. M. G. Doncel. Barcelona: Universitat Autonoma
Barcelona.

Lee, J., and Wald, R. M. (1990). ‘Local symmetries and constraints’. Journal of
Mathematical Physics, 31, 725–43.

Martin, C. (2002a). ‘Gauge principles, gauge arguments and the logic of nature’.
Philosophy of Science, 69, S221–34.

(2002b). ‘Gauging gauge: remarks on the conceptual foundations of gauge theory’.
Ph.D. dissertation, University of Pittsburgh.

Maxwell, J. C. (1877). Matter and Motion. Reprinted (1951) New York: Dover.
Noether, E. (1918). ‘Invariante Variationsprobleme’. In Nachrichten von der Königlichen

Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse,
Book 2, 235–57.



162 John Earman

Norton, J. D. (1993). ‘General covariance and the foundations of general relativity: eight
decades of dispute’. Reports on Progress in Physics, 56, 791–858.

Olver, P. J. (1993). Applications of Lie Groups to Differential Equations, 2nd edn. New
York: Springer-Verlag.

Sarlet, W. (1982). ‘The Helmholtz conditions revisited: a new approach to the inverse
problem of Lagrangian dynamics’. Journal of Physics A, 15, 1503–17.

Wald, R. M. (1986). ‘Spin-two fields and general covariance’. Physical Review D, 33,
3613–25.

Weinberg, S. (1974). ‘Recent progress in gauge theories of the weak, electromagnetic and
strong interactions’. Reviews of Modern Physics, 46, 255–77.

Wipf, A. (1994). ‘Hamilton’s formalism for systems with constraints’. In Canonical
Gravity: From Classical to Quantum, ed. J. Ehlers and H. Friedrich, pp. 22–58. New
York: Springer-Verlag.


